连续自然数平立方求和推导

本文详细推导了连续自然数的求和、平方和及立方和公式,通过逐步展开并求和,揭示了从1到n的连续自然数在平方和立方求和方面的数学规律。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

连续自然数求和公式推导

由 ( n + 1 ) 2 = n 2 + 2 n + 1 得 : ( n + 1 ) 2 − n 2 = 2 × n + 1. ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 4 2 − 3 2 = 2 × 3 + 1. 3 2 − 2 2 = 2 × 2 + 1. 2 2 − 1 2 = 2 × 1 + 1. 由(n+1)^2=n^2+2n+1得: \\ \begin{aligned} (n+1)^2-n^2&=2\times n+1.\\ \cdots\cdots\cdots&\cdots\cdots\cdots\cdots \\ 4^2-3^2&=2\times3+1.\\ 3^2-2^2&=2\times2+1.\\ 2^2-1^2&=2\times1+1.\\ \end{aligned} (n+1)2=n2+2n+1:(n+1)2n2423232222212=2×n+1.=2×3+1.=2×2+1.=2×1+1.

求 和 以 上 式 子 , 得 : 求和以上式子,得: ,:
( n + 1 ) 2 − 1 2 = 2 ∑ i = 1 n i + n . n 2 + 2 n − n = 2 ∑ i = 1 n i . ∑ i = 1 n i = n 2 + n 2 = n ( n + 1 ) 2 . \begin{aligned} (n+1)^2-1^2&=2\sum_{i=1}^ni+n.\\ n^2+2n-n&=2\sum_{i=1}^ni.\\ \sum_{i=1}^ni&=\frac{n^2+n}{2}=\frac{n(n+1)}{2}. \end{aligned} (n+1)212n2+2nni=1ni=2i=1ni+n.=2i=1ni.=2n2</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值