连续自然数平立方求和推导
连续自然数求和公式推导
由 ( n + 1 ) 2 = n 2 + 2 n + 1 得 : ( n + 1 ) 2 − n 2 = 2 × n + 1. ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 4 2 − 3 2 = 2 × 3 + 1. 3 2 − 2 2 = 2 × 2 + 1. 2 2 − 1 2 = 2 × 1 + 1. 由(n+1)^2=n^2+2n+1得: \\ \begin{aligned} (n+1)^2-n^2&=2\times n+1.\\ \cdots\cdots\cdots&\cdots\cdots\cdots\cdots \\ 4^2-3^2&=2\times3+1.\\ 3^2-2^2&=2\times2+1.\\ 2^2-1^2&=2\times1+1.\\ \end{aligned} 由(n+1)2=n2+2n+1得:(n+1)2−n2⋯⋯⋯42−3232−2222−12=2×n+1.⋯⋯⋯⋯=2×3+1.=2×2+1.=2×1+1.
求 和 以 上 式 子 , 得 : 求和以上式子,得: 求和以上式子,得:
( n + 1 ) 2 − 1 2 = 2 ∑ i = 1 n i + n . n 2 + 2 n − n = 2 ∑ i = 1 n i . ∑ i = 1 n i = n 2 + n 2 = n ( n + 1 ) 2 . \begin{aligned} (n+1)^2-1^2&=2\sum_{i=1}^ni+n.\\ n^2+2n-n&=2\sum_{i=1}^ni.\\ \sum_{i=1}^ni&=\frac{n^2+n}{2}=\frac{n(n+1)}{2}. \end{aligned} (n+1)2−12n2+2n−ni=1∑ni=2i=1∑ni+n.=2i=1∑ni.=2n2</