【力扣】766. 托普利茨矩阵

以下为本人思路,末尾进阶部分的答案来自力扣官方题解

题目

给你一个 m × n m × n m×n 的矩阵 m a t r i x matrix matrix 。如果这个矩阵是托普利茨矩阵,返回 t r u e true true;否则,返回 f a l s e false false
如果矩阵上每一条由左上到右下的对角线上的元素都相同,那么这个矩阵是 托普利茨矩阵 。

示例1

在这里插入图片描述

输入 m a t r i x = [ [ 1 , 2 , 3 , 4 ] , [ 5 , 1 , 2 , 3 ] , [ 9 , 5 , 1 , 2 ] ] matrix = [[1,2,3,4],[5,1,2,3],[9,5,1,2]] matrix=[[1,2,3,4],[5,1,2,3],[9,5,1,2]]
输出 t r u e true true
解释
在上述矩阵中, 其对角线为:
[ 9 ] [9] [9]”, “ [ 5 , 5 ] [5, 5] [5,5]”, “ [ 1 , 1 , 1 ] [1, 1, 1] [1,1,1]”, “ [ 2 , 2 , 2 ] [2, 2, 2] [2,2,2]”, “ [ 3 , 3 ] [3, 3] [3,3]”, “ [ 4 ] [4] [4]”。
各条对角线上的所有元素均相同, 因此答案是 T r u e True True

示例2

在这里插入图片描述

输入 m a t r i x = [ [ 1 , 2 ] , [ 2 , 2 ] ] matrix = [[1,2],[2,2]] matrix=[[1,2],[2,2]]
输出 f a l s e false false
解释
对角线 “ [ 1 , 2 ] [1, 2] [1,2]” 上的元素不同。

提示

  1. m = = m a t r i x . l e n g t h m == matrix.length m==matrix.length
  2. n = = m a t r i x [ i ] . l e n g t h n == matrix[i].length n==matrix[i].length
  3. 1 < = m , n < = 20 1 <= m, n <= 20 1<=m,n<=20
  4. 0 < = m a t r i x [ i ] [ j ] < = 99 0 <= matrix[i][j] <= 99 0<=matrix[i][j]<=99

进阶

  • 如果矩阵存储在磁盘上,并且内存有限,以至于一次最多只能将矩阵的一行加载到内存中,该怎么办?
  • 如果矩阵太大,以至于一次只能将不完整的一行加载到内存中,该怎么办?

本人思路

由题意可知,我们只需要比较同一对角线(从左上到右下)上的数,若同一线上的数均相等,则返回 t r u e true true,否则返回 f a l s e false false

代码

class Solution {
    public boolean isToeplitzMatrix(int[][] matrix) {
        int m = matrix.length;
        int n = matrix[0].length;

        for (int i=0; i<m-1; i++)
        {
            for (int j=0; j<n-1; j++)
            {
                if (matrix[i][j] != matrix[i+1][j+1])
                    return false;
            }
        }

        return true;
    }
}

复杂度分析

  • 时间复杂度: O ( m n ) O(mn) O(mn)。其中 m m m n n n 分别为数组的行数和列数。
  • 空间复杂度: O ( 1 ) O(1) O(1)

进阶问题

  • 对于进阶问题一,一次最多只能将矩阵的一行加载到内存中,我们将每一行复制到一个连续数组中,随后在读取下一行时,就与内存中此前保存的数组进行比较。
  • 对于进阶问题二,一次只能将不完整的一行加载到内存中,我们将整个矩阵竖直切分成若干子矩阵,并保证两个相邻的矩阵至少有一列或一行是重合的,然后判断每个子矩阵是否符合要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

墨momo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值