以下为本人思路,末尾进阶部分的答案来自力扣官方题解
题目
给你一个 m × n m × n m×n 的矩阵 m a t r i x matrix matrix 。如果这个矩阵是托普利茨矩阵,返回 t r u e true true;否则,返回 f a l s e false false。
如果矩阵上每一条由左上到右下的对角线上的元素都相同,那么这个矩阵是 托普利茨矩阵 。
示例1
输入: m a t r i x = [ [ 1 , 2 , 3 , 4 ] , [ 5 , 1 , 2 , 3 ] , [ 9 , 5 , 1 , 2 ] ] matrix = [[1,2,3,4],[5,1,2,3],[9,5,1,2]] matrix=[[1,2,3,4],[5,1,2,3],[9,5,1,2]]
输出: t r u e true true
解释:
在上述矩阵中, 其对角线为:
“ [ 9 ] [9] [9]”, “ [ 5 , 5 ] [5, 5] [5,5]”, “ [ 1 , 1 , 1 ] [1, 1, 1] [1,1,1]”, “ [ 2 , 2 , 2 ] [2, 2, 2] [2,2,2]”, “ [ 3 , 3 ] [3, 3] [3,3]”, “ [ 4 ] [4] [4]”。
各条对角线上的所有元素均相同, 因此答案是 T r u e True True。
示例2
输入: m a t r i x = [ [ 1 , 2 ] , [ 2 , 2 ] ] matrix = [[1,2],[2,2]] matrix=[[1,2],[2,2]]
输出: f a l s e false false
解释:
对角线 “ [ 1 , 2 ] [1, 2] [1,2]” 上的元素不同。
提示
- m = = m a t r i x . l e n g t h m == matrix.length m==matrix.length
- n = = m a t r i x [ i ] . l e n g t h n == matrix[i].length n==matrix[i].length
- 1 < = m , n < = 20 1 <= m, n <= 20 1<=m,n<=20
- 0 < = m a t r i x [ i ] [ j ] < = 99 0 <= matrix[i][j] <= 99 0<=matrix[i][j]<=99
进阶
- 如果矩阵存储在磁盘上,并且内存有限,以至于一次最多只能将矩阵的一行加载到内存中,该怎么办?
- 如果矩阵太大,以至于一次只能将不完整的一行加载到内存中,该怎么办?
本人思路
由题意可知,我们只需要比较同一对角线(从左上到右下)上的数,若同一线上的数均相等,则返回 t r u e true true,否则返回 f a l s e false false。
代码
class Solution {
public boolean isToeplitzMatrix(int[][] matrix) {
int m = matrix.length;
int n = matrix[0].length;
for (int i=0; i<m-1; i++)
{
for (int j=0; j<n-1; j++)
{
if (matrix[i][j] != matrix[i+1][j+1])
return false;
}
}
return true;
}
}
复杂度分析
- 时间复杂度: O ( m n ) O(mn) O(mn)。其中 m m m、 n n n 分别为数组的行数和列数。
- 空间复杂度: O ( 1 ) O(1) O(1)。
进阶问题
- 对于进阶问题一,一次最多只能将矩阵的一行加载到内存中,我们将每一行复制到一个连续数组中,随后在读取下一行时,就与内存中此前保存的数组进行比较。
- 对于进阶问题二,一次只能将不完整的一行加载到内存中,我们将整个矩阵竖直切分成若干子矩阵,并保证两个相邻的矩阵至少有一列或一行是重合的,然后判断每个子矩阵是否符合要求。