CANN版本为8.0.RC1.alpha002 安装指南

参加原生创新算子挑战赛,需要基于CANN版本为8.0.RC1.alpha002进行Ascend C算子编写。我在启智社区的云环境创建调试任务进行实验的,选择的镜像版本如下:

在这里插入图片描述
打开调试任务之后,打开终端显示如下:
在这里插入图片描述
输入“bash”切换到bash命令格式:
在这里插入图片描述
创建一个工作目录:

mkdir work

进入到工作目录,下载CANN8.0.RC1.alpha00软件:

不同的操作系统,CPU架构不一样,可以使用如下命令查看CPU架构是aarch64还是x86_64。

uname -m

确定好CPU架构为aarch64之后,下载对应的安装包:

wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC702/Ascend-cann-toolkit_8.0.RC1.alpha002_linux-aarch64.run

在这里插入图片描述

下载好了软件包之后,赋执行权限并安装 :

chmod +x Ascend-cann-toolkit_8.0.RC1.alpha002_linux-aarch64.run
./Ascend-cann-toolkit_8.0.RC1.alpha002_linux-aarch64.run --full

在这里插入图片描述
安装过程大约需要15-20分钟。安装好之后显示如下信息:
在这里插入图片描述
其中表明CANN8.0.RC1.alpha002安装在/usr/local/Ascend目录下,这个地址对后面的Ascend C算子开发有很大作用,需要记住。

下载cmake,由于启智社区没有安装cmake,所以我下载cmake 3.27.4-linux-aarch64.tar.gz版本,使用如下代码:

wget https://temp-2a3b.obs.cn-north-4.myhuaweicloud.com/cmake-3.27.4-linux-aarch64.tar.gz

解压压缩包:

tar -xf cmake-3.27.4-linux-aarch64.tar.gz

配置环境变量:

source /usr/local/Ascend/ascend-toolkit/set_env.sh
export PATH=/home/ma-user/work/cmake-3.27.4-linux-aarch64/bin:$PATH
export ASCEND_HOME_DIR=/usr/local/Ascend/ascend-toolkit/latest 

再次检验cmake版本,安装成功:
在这里插入图片描述
至此,环境安装成功。

接着就可以下载samples仓库:

git clone https://gitee.com/ascend/samples.git 

AddKernelInvocation样例运行

打开样例目录

cd samples/operator/AddCustomSample/KernelLaunch/AddKernelInvocation

配置环境变量

export ASCEND_INSTALL_PATH=/usr/local/Ascend/ascend-toolkit/latest

样例执行

bash run.sh -r [RUN_MODE] -v  [SOC_VERSION] 
```
- SOC_VERSION:昇腾AI处理器型号,如果无法确定具体的[SOC_VERSION],则在安装昇腾AI处理器的服务器执行npu-smi info命令进行查询,在查询到的“Name”前增加Ascend信息,例如“Name”对应取值为xxxyy,实际配置的[SOC_VERSION]值为Ascendxxxyy。支持以下参数取值(xxx请替换为具体取值):
  - Atlas 推理系列产品(Ascend 310P处理器)参数值:Ascend310P1、Ascend310P3
  - Atlas 训练系列产品参数值:AscendxxxA、AscendxxxB
  - Atlas A2训练系列产品参数值:AscendxxxB1、AscendxxxB2、AscendxxxB3、AscendxxxB4
- RUN_MODE:编译方式,可选择CPU调试,NPU仿真,NPU上板。支持参数为[cpu / sim / npu],默认值为cpu。

注:针对Atlas 训练系列产品使用NPU仿真调试,会存在精度问题,可选择其他芯片进行NPU仿真调试。

示例:

bash run.sh -r cpu -v Ascend910A

在这里插入图片描述

bash run.sh -r npu -v Ascend910A

在这里插入图片描述

编译算子工程

编译自定义算子工程,构建生成自定义算子包
切换到算子工程AddCustom目录

cd samples/operator/AddCustomSample/FrameworkLaunch/AddCustom
  • 修改CMakePresets.json中ASCEND_CANN_PACKAGE_PATH为CANN软件包安装后的实际路径。(/usr/local/Ascend/ascend-toolkit/latest)

在这里插入图片描述
在算子工程AddCustom目录下执行如下命令,进行算子工程编译。

./build.sh

编译成功后,会在当前目录下创建build_out目录,并在build_out目录下生成自定义算子安装包custom_opp__.run,例如“custom_opp_ubuntu_x86_64.run”。

在这里插入图片描述

3.部署算子包
执行如下命令,在自定义算子安装包所在路径下,安装自定义算子包。

cd build_out
./custom_opp_euleros_aarch64.run

在这里插入图片描述
配置环境变量

export ASCEND_INSTALL_PATH=/usr/local/Ascend/ascend-toolkit/latest

通过aclnn调用的方式调用AddCustom算子工程
样例运行

进入到样例目录

```
cd samples/operator/AddCustomSample/FrameworkLaunch/AclNNInvocation

样例执行

样例执行过程中会自动生成测试数据,然后编译与运行aclnn样例,最后检验运行结果。具体过程可参见run.sh脚本。
```
bash run.sh

在这里插入图片描述

使用aclopExecuteV2模型调用的方式调用AddCustom算子工程

进入到样例目录

cd samples/operator/AddCustomSample/FrameworkLaunch/AclOfflineModel

样例执行

样例执行过程中会自动生成测试数据,然后编译与运行acl离线模型调用样例,最后检验运行结果。具体过程可参见run.sh脚本。
```
bash run.sh
```

在这里插入图片描述

### CANN 安装教程及 Linux 环境配置 #### 1. 环境准备 在安装 CANN 软件包之前,需确保目标机器已满足基本硬件和操作系统需求。通常推荐的操作系统版本包括 Ubuntu 和 openEuler 等。以下是基于 WSL2 的 Ubuntu 18.04 配置流程。 - **安装 WSL2** WSL2 提供了更高效的虚拟化支持,适合用于开发环境搭建。可以通过简易方式快速部署[^1]: ```bash wsl --install -d Ubuntu-18.04 ``` 对于高级用户可以选择手动安装方法来调整更多参数。 #### 2. 替换软件源并更新系统 为了提高下载速度以及解决可能存在的网络问题,建议更换国内镜像源。编辑 `/etc/apt/sources.list` 文件并将默认内容替换为阿里云或其他稳定镜像地址: ```bash sudo sed -i 's/archive.ubuntu.com/mirrors.aliyun.com/g' /etc/apt/sources.list sudo apt update && sudo apt upgrade -y ``` 此步骤有助于后续依赖库的顺利安装。 #### 3. 安装必要的依赖项 CANN 对运行环境有一定要求,在正式安装前需要预先准备好这些基础组件。具体命令如下所示: ```bash sudo apt install build-essential cmake git python3-pip libssl-dev -y pip3 install numpy protobuf requests scikit-image matplotlib opencv-python-headless ``` 上述操作涵盖了编译工具链、Python 库以及其他常用模块的支持。 #### 4. 获取与解压 CANN Toolkit 访问官方站点获取最新版压缩文件链接,并按照指引完成本地存储路径下的提取过程: ```bash wget https://your-download-link/cann_toolkit.tar.gz tar zxvf cann_toolkit.tar.gz -C ~/Ascend/ source /home/ma-user/Ascend/ascend-toolkit/set_env.sh ``` 注意最后一步加载 `set_env.sh` 是至关重要的环节之一,它会初始化一系列必需的全局变量以便程序正常运作[^2]。 #### 5. MindStudio 整合设置 如果计划利用 IDE 进行项目管理,则可以考虑集成 PyCharm 或者专用解决方案——MindStudio 。前者侧重通用型应用构建;后者则专攻 AI 场景优化体验[^3]。 针对 SSH 断连现象频繁发生的状况,可通过修改服务端配置文件实现持久保持连接状态的目的[^4]: ```bash echo "ClientAliveInterval 60\nClientAliveCountMax 99999" | sudo tee -a /etc/ssh/sshd_config > /dev/null sudo systemctl restart sshd.service ``` 以上更改能够显著改善远程调试期间稳定性表现。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

STRUGGLE_xlf

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值