题目描述
A,2,3,4,5,6,7,8,9 共9张纸牌排成一个正三角形(A按1计算)。要求每个边的和相等。
下图就是一种排法。
这样的排法可能会有很多。
如果考虑旋转、镜像后相同的算同一种,一共有多少种不同的排法呢?
请你计算并提交该数字。
注意:需要提交的是一个整数,不要提交任何多余内容。
输入
没有输入
输出
一个整数。
思路
这里面还是板子题,用全排列的模板去写就行,值得注意的是考虑旋转、镜像后相同的算同一种这句话,所以算出来的结果应该除以3,再除以2。
代码呈上:
#include <stdio.h>
#define N 9
int a[]={1,2,3,4,5,6,7,8,9};
int num = 0;
void disp()
{
int a1=a[0]+a[1]+a[2]+a[3];
int a2=a[3]+a[4]+a[5]+a[6];
int a3=a[6]+a[7]+a[8]+a[0];
if(a1==a2 && a2==a3)
num++;
}
void change(int *a,int i)
{
int t = a[0];
a[0]=a[i];
a[i]=t;
}
void permit(int *a,int n)
{
if(n==1)
{
disp();
return;
}
for(int i = 0;i<n;i++)
{
change(a,i);
permit(a+1,n-1);
change(a,i);
}
}
int main ()
{
permit(a,N);
printf("%d",num/6);
return 0;
}
答案:144
运行示例