- 博客(7)
- 收藏
- 关注
原创 【文献阅读八】IcaGCN: Model Intents via Coactivated Graph Convolution Network for Recommendation
这篇文献提出了一种基于 `LightGCN` 改进的方法 `IcaGCN`。考虑到目前主流的GCN模型没有考虑到元数据的数据增强以及每个节点扮演不同角色的重要性和权重不同,从而RS的性能受到限制,IcaGCN通过利用 `MS-CAM` 方法的思路,在输入层之后增加了一层 `IcaGCN Layer`,用来数据增强和为每个节点赋予不同权重,进而表示其重要性。
2023-12-11 17:52:54 1128
原创 【文献阅读七】Adaptive Graph Contrastive Learning for Recommendation
本篇文献主要介绍了作者提出了一种推荐系统的新方法,自适应图对比学习 `AdaGCL` 。`AdaGCL` 运用的技术基础是 `GNN` ,该方法使用了两个自适应的对比视图生成器进行数据增强,以更好的增强CF范式。
2023-12-04 16:43:49 1582 1
原创 【文献阅读六】PALR: Personalization Aware LLMs for Recommendation
作者提出了一个叫 `PALR` 的新框架,旨在整合用户历史行为(如点击、购买、评分等。)和 `LLMs` 生成用户偏好的 `items`,从而提高推荐能力。该方法与目前的方法不同的是,`PALR` 通过微调70亿级别的`LLM`,并将微调之后的 `LLM` 作为生成推荐 `items` 的排序模型。这种方法能够将用户行为数据纳入 `LLM` 的推理过程,更好地泛化到新用户和看不见的项目中。
2023-11-26 18:08:12 1033
原创 【文献阅读五】RLP: A Unified Pretrain, Personalized Prompt & Predict Paradigm (P5)
作者提出了 P5 方法,该方法可以将多个推荐任务统一在一个框架中。由于自然语言的丰富信息可以帮助 P5 捕获更深层的语义进行个性化推荐,因此在 P5 中所有数据都被转换成了自然语言,并且 P5 中的多个推荐任务共用一个数据集和损失函数。当应用到下游时,P5 通过自适应的个性化 prompts 来实现“千人千面”,进而实现零样本或少样本泛化,省去微调工作。
2023-11-21 20:10:09 438
原创 【文献阅读四】An Effective and Efficient Tuning Framework to Align Large Language Model with Recommendation
摘要:本文主要是对`An Effective and Efficient Tuning Framework to Align Large Language Model with Recommendation`这篇文献的阅读。
2023-11-07 15:11:23 398
原创 【文献阅读三】A Survey on Large Language Models for Recommendation
摘要:本文是关于推荐系统领域的一篇综述的阅读。为了提供一个关于LLM-based的推荐模型的全面了解,该综述将现存的模型分为两大范式:基于判别式的推荐模型DLLM4Rec和基于生成式的推荐模型GLLM4Rec。本综述重点讨论了GLLM4Rec。
2023-10-28 11:36:26 743
原创 【文献阅读二】Zero-Shot Next-Item Recommendation using Large Pretrained Language Models
摘要:本文对关于推荐系统领域的一篇文章Zero-Shot Next-Item Recommendation using Large Pretrained Language Models做了一个初步的阅读与理解。
2023-10-26 14:26:11 238
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人