【文献阅读八】IcaGCN: Model Intents via Coactivated Graph Convolution Network for Recommendation

文献来源:IcaGCN: Model Intents via Coactivated Graph Convolution Network for Recommendation
期刊会议:IEEE Access '23
源码:Python
本文只是对原文章做的一个初步阅读与理解,如有错误的地方,还请多多指点。想了解更多请原读原文。

一、介绍

这篇文献提出了一种基于 LightGCN 改进的方法 IcaGCN。考虑到目前主流的GCN模型没有考虑到元数据的数据增强以及每个节点扮演不同角色的重要性和权重不同,从而RS的性能受到限制,IcaGCN通过利用 MS-CAM 方法的思路,在输入层之后增加了一层 IcaGCN Layer,用来数据增强和为每个节点赋予不同权重,进而表示其重要性。

二、IcaGCN模型

方法的目标是尽可能地保留用户嵌入和项目嵌入本身的影响,并通过非注意力机制方法推导出每个节点的权重,使得重要节点的影响大于非重要节点的影响。(创新点
在这里插入图片描述

2.1 Input Layer

E u = [ e u 1 , ⋯   , e u M ] ; E v = [ e v 1 , ⋯   , e v N ] E_u=[e_{u_1},\cdots,e_{u_M}];E_v=[e_{v_1},\cdots,e_{v_N}] Eu=[eu1,,euM];Ev=[ev1,,evN]
最后的嵌入矩阵为 E = [ E u , E v ] E=[E_u,E_v] E=[Eu,Ev] , 处理方式和 LightGCN 一致。

2.2 IcaGCN Layer

  1. Coactivate Unit
    引入了一个超参数 阶数,意义在于指定原始输入的增强程度和全连接层数。
    在这里插入图片描述
    o r d e r = i + 1 ; h 0 = E = [ e u ⊕ e v ] ; h i = w i − 1 ⊗ h i − 1 + b i − 1 ; E c o a = ∑ i = 1 o r d e r − 1 h i . order=i+1; \\ h_0=E=[e_u \oplus e_v];\\ h_i=w_{i-1} \otimes h_{i-1} + b_{i-1}; \\ E_{coa}=\sum^{order-1}_{i=1}h_i . order=i+1;h0=E=[euev];hi=wi1hi1+bi1;Ecoa=i=1order1hi.

  2. Cube Unit
    在这里插入图片描述
    C u b e 0 = E = [ e u ⊕ e v ] ; C u b e 1 = G l o b a l _ m a x _ p o o l i n g ( E ) ; C u b e 2 = m a x ( 0 , w × C u b e 1 + b ) ; C u b e 3 = d r o p o u t ( C u b e 2 ) ; E c u b e = 1 1 + e − C u b e 3 . Cube_0=E=[e_u \oplus e_v];\\ Cube_1=Global\_max\_pooling(E); \\ Cube_2=max(0,w \times Cube_1 + b); \\ Cube_3=dropout(Cube_2);\\ E_{cube}=\frac{1}{1+e^{-Cube_3}}. Cube0=E=[euev];Cube1=Global_max_pooling(E);Cube2=max(0,w×Cube1+b);Cube3=dropout(Cube2);Ecube=1+eCube31.

2.3 Prediction Layer

e u = ∑ l = 0 L a l e u ( l ) ; e v = ∑ l = 0 L a l e v ( l ) e_u=\sum^{L}_{l=0}a_le^{(l)}_u; e_v=\sum^{L}_{l=0}a_le^{(l)}_v eu=l=0Laleu(l);ev=l=0Lalev(l)
最后的user和item的表征为各层嵌入向量的和。
y ^ u v = e u T e v \hat y_{uv}=e^T_ue_v y^uv=euTev

将最终的user和item表征进行内积,作为预测值。

2.4 Model Training

L o s s B P R = − ∑ u = 1 M ∑ i ∈ N u ∑ j ∉ N u l n σ ( y ^ u i − y ^ u j ) + λ ∣ ∣ E ( 0 ) ∣ ∣ 2 Loss_{BPR}=-\sum^M_{u=1}\sum_{i \in N_u}\sum_{j \notin N_u}ln\sigma(\hat y_{ui}-\hat y_{uj}) + \lambda||E^{(0)}||^2 LossBPR=u=1MiNuj/Nul(y^uiy^uj)+λ∣∣E(0)2

三、实验数据

整体表现如下,本文提出的 IcaGCN 方法能够结合用户嵌入和物品嵌入本身的信息,进而找到各个节点的权重的有效性。
在这里插入图片描述
后面的消融实验分别从 Coactivate Unit 的阶数、Cube Unit 的数量、丢弃率、数据增强方法等等进行了比较。

四、总结

在这里插入图片描述

  • 17
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值