【文献阅读二】Zero-Shot Next-Item Recommendation using Large Pretrained Language Models

文献来源:Zero-Shot Next-Item Recommendation using Large Pretrained Language Models
本文只是对原文章做的一个初步阅读与理解,如有错误的地方,还请多多指点。想了解更多请原读原文。

这篇文献主要就是做了一个关于利用大模型在电影数据集上进行预测next-item的工作。作者提出了一个方法NIR,该方法主要流程是:预处理+三步提示+格式化输出

  1. 预处理表示在promt之前,先用外部模块对候选集进行初筛,也就是缩小推荐域的大小,从而提高效率;
  2. 三步提示:
    • 第一步:指导GPT-3执行子任务进行基于先前的交互数据来总结用户的偏好;
    • 第二步:结合第一步给出的偏好答案,选择具有代表性的曾经看过的电影;
    • 第三步:结合第二步的prompt及答案,给出一个包含10个排过序的推荐列表。
  3. 格式化输出:按照指定格式输出答案。

NIR流程
在预处理阶段生成候选集采用了两种方法,分别是user-filteringitem-filtering

  • User-filtering&#x

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值