神经网络BP反向传播算法原理和详细推导流程

本文介绍了BP反向传播算法的基本原理和详细推导流程,从信息前向传播到误差反向传播,深入讲解了权重和偏置参数的更新,以及BP算法的核心公式。此外,还探讨了梯度消失问题和如何通过Rprop算法加快训练速度。
摘要由CSDN通过智能技术生成
                                   
               
1 反向传播算法和BP网络简介

误差反向传播算法简称反向传播算法(即BP算法)。使用反向传播算法的多层感知器又称为BP神经网络。BP算法是一个迭代算法,它的基本思想为:(1)先计算每一层的状态和激活值,直到最后一层(即信号是前向传播的);(2)计算每一层的误差,误差的计算过程是从最后一层向前推进的(这就是反向传播算法名字的由来);(3)更新参数(目标是误差变小)。迭代前面两个步骤,直到满足停止准则(比如相邻两次迭代的误差的差别很小

    本文的记号说明:

 


下面以三层感知器(即只含有一个隐藏层的多层感知器)为例介绍“反向传播算法(BP 算法)”。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值