The main difference between pandas.read_pickle()
and pickle.load()
lies in the functionality and the object type they can handle.
-
pandas.read_pickle()
: This function is part of the pandas library and is specifically designed to read pickle files into a DataFrame or other pandas-compatible objects. It provides a convenient way to directly read pickle files without the need to explicitly import thepickle
module. It is suitable for reading pickled pandas objects, such as DataFrames or Series, directly into memory.Example usage:
import pandas as pd # Read a pickle file using pandas df = pd.read_pickle('data.pkl')
-
pickle.load()
: This function is part of the built-inpickle
module in Python and is used to deserialize a pickled object from a file-like object. It can handle a broader range of pickled objects, including those created using libraries other than pandas.pickle.load()
is not limited to pandas objects and can load any Python object that has been pickled.Example usage:
import pickle # Read a pickle file using pickle module with open('data.pkl', 'rb') as file: obj = pickle.load(file)
The key distinction is that pandas.read_pickle()
is specifically tailored for pandas-compatible objects, providing a high-level interface within the pandas library. On the other hand, pickle.load()
is a more general-purpose function that can handle a wider range of pickled objects but requires the explicit use of the pickle
module.
If you are working with pickled pandas objects or wish to directly load them into a DataFrame, pandas.read_pickle()
is generally the preferred choice. However, if you need to load objects pickled by other libraries or have more complex pickled objects, using pickle.load()
from the pickle
module would be more appropriate.