机器学习笔记sklearn--转换器与预估器学习笔记

本文介绍了sklearn库在机器学习中的应用,重点讨论了转换器和预估器的作用。转换器用于特征工程,如标准化、文本数据处理等,通过fit_transform()和transform()方法进行训练和转换。预估器则实现了算法的建模与预测功能,包括训练模型和评估模型性能。
摘要由CSDN通过智能技术生成

机器学习笔记sklearn–转换器与预估器学习笔记

写这儿总不会忘放那儿了吧,那天忘了回来看看

Sklearn库是python用于机器学习的一个库,转化器和估计器框架

转化器:

特征工程在数据清洗好之后,特征工程是将数据转换成可以建模的特征变量,使数据集能够应用于sklearn库中封装的模型。例如数据标准化,文本数据数据化,数据哑变量化(01化)……之后就是划分训练集测试集。

在进入到特征工程时,连接数据集与特征工程的接口称为转换器,

流程

  1. 实例化一个转化器(为服务下一步)
    transformer=
    StandardScaler() 标准化(KNN近邻算法)
    DictVectorizer(sparse = False) 字典特征抽取—将离散变量转化成哑变量(决策树)
    CountVectorizer() 文本特征抽取—词频统计一类

  2. 调用transformer
    transformer.fit_transform()

    fit(): 【翻译为:使适应……】训练模型,计算出一些统计特征统计量,均值,方差这些训练集的统计特征,放入转换器中服务transform(),单独用不会返回结果
    transform(): 在fit()的基础上进行标准化,降维
    fit_transform(): 即上面两个的组合

    transform(), fit_transform() 两个不能混用,
    **transform()常在训练集使用完fit()后,继续使用训练集得到的统计特征,对测试集使用,fit_transform(自己)**就会使用“自己”的数据特征转化(PCA, 标准化……)

估计器:estimator

实现算法的API。我的理解是,用sklearn中的工具进行建模+预测
有两个步骤:
1) 训练集上训练模型(建模)
a. 实例化一个预估器模型(例:estimator=DesionTreeClassifier())
b. 用fit()在训练集中训练模型。estimator.fit(x_train, y_train)
c. 对模型进行评估,选出最好的作为预测新数据的模型使用
2) 用挑好的模型,对新数据进行预测(预测)
3)计算准确率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值