1、图的定义
-
图 G G G是由两个集合 V V V和 E E E组成(记做 G = ( V , E ) G = (V, E) G=(V,E)):
V = V = V= { v 1 , v 2 , v 3 , . . . v n , v_1,v_2,v_3,...v_n, v1,v2,v3,...vn,}是由 G G G的结点( v e r t e x vertex vertex)组成的集合
E = E = E= { e 1 , e 2 , e 3 , . . . e n e_1,e_2,e_3,...e_n e1,e2,e3,...en} 是由连接两个结点的边( e d g e edge edge)组成的集合 -
(无向图) 若边 e e e(唯一的边)连接结点 v 1 v_1 v1和 v 2 v_2 v2, 则表示为 e = ( v 1 , v 2 ) e = (v_1,v_2) e=(v1,v2)或 e = ( v 2 , v 1 ) e = (v_2,v_1) e=(v2,v1),表示连接结点 v 1 v_1 v1和结点 v 2 v_2 v2的边
-
(有向图) 若边 e e e(唯一的边)连接有序结点对 v 1 v_1 v1和 v 2 v_2 v2, 则表示为 e = ( v 1 , v 2 ) e = (v_1,v_2) e=(v1,v2),表示一条从结点 v 1 v_1 v1到结点 v 2 v_2 v2的边
(有向图和无向图) G G G中的一条边连接结点 v 1 v_1 v1和结点 v 2 v_2 v2,则称结点 v 1 v_1 v1和结点 v 2 v_2 v2相关联,结点v1和结点v2是相邻结点
(有向图和无向图) 一般情况下,
E
E
E和
V
V
V都是有限的集合,且
V
V
V为非空
完全图
偶图(或二部图、二分图)
补图
设
G
G
G为简单图,H是一个以
V
(
G
)
V(G)
V(G)为顶点集的图,且两个顶点在
H
H
H中邻接当且仅当它们在
G
G
G中不邻接,则称
H
H
H为
G
G
G的补图(
c
o
m
p
l
e
m
e
n
t
g
r
a
p
h
complement\ graph
complement graph)
子图
- 图的生成子图:如果图 G G G的一个子图包含 G G G的所有顶点,称该子图为G的一个生成子图
联图积图
2、顶点的度
顶点的度及其性质
- 如果一个图的每个顶点都具有相同的度,则称这个图是正则的( r e g u l a r regular regular)。每个顶点的度均为 k k k的正则图。则称k-正则图( r e g u l a r g r a p h regular \ graph regular graph)。
握手定理
图的度序列及其性质
3、图的同构
4、图运算
超立方体
5、道路和回路
道路
链(chian):边均不相同的通道称为链
迹(trail):边互不相同的链称为迹
道路(path):顶点均不相同(从而所有的边也不相同)的通道称为道路(
p
a
t
h
path
path)
回路
- 回路:起点与终点重合的道路叫做回路( c i r c u i t circuit circuit)或称为圈( c i r c l c circlc circlc)
6、E图
七桥问题
- 将问题转换为是否为
E
u
l
e
r
Euler
Euler图
Fleury(弗勒里)算法
中国邮路问题
例题
7、H图
解决环球航行问题
举例