Weisfeiler-Lehman(WL)算法

Weisfeiler-Lehman(WL)算法是一种用于图的同构测试的方法,通过不断迭代更新节点标签来区分不同结构的图。算法包括标签扩展、压缩和重标签过程,其在一维形式下与GNNs有相似之处。文章介绍了WL测试的步骤、一维WL算法的执行流程,以及General Weisfeiler-Lehman Kernels,包括Subtree、Edge和Shortest Path Kernel的计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Weisfeiler-Lehman(WL)算法

The Weisfeiler-Lehman Test of Isomorphism

  • 图核使用来自 W e i s f e i l e r − L e h m a n Weisfeiler-Lehman WeisfeilerLehman同构检验的概念,更具体地讲是其一维变体,也称为“朴素顶点修饰”
  • 该算法的关键思想是通过对相邻节点的节点标签排序后的集合来扩展节点标签,并将这些扩展后的标签压缩为新的短标签
  • a l p h a b e t alphabet alphabet Σ Σ Σ必须足够大才能使 f f f内射性。 对于两个图, ∣ Σ ∣ = 2 n |Σ| = 2n Σ=2n个满足条件。

在这里插入图片描述

  • ( a ) (a) a网络中每个节点有一个 l a b e l label label,如图中的彩色的 1 , 2 , 3 , 4 , 5 1,2,3,4,5 12345
  • ( b ) (b) b标签扩展:做一阶广度优先搜索,即只遍历自己的邻居。比如在图 ( a ) (a) a网络 G G G中原 ( 5 ) (5) (5)号节点,变成 ( 5 , 234 ) (5,234) (5,234),这是因为原 ( 5 ) (5) 5节点的一阶邻居有 2 , 3 和 4 2,3和4 234
  • ( c ) (c) c标签压缩:仅仅只是把扩展标签映射成一个新标签,如 5 , 234 = > 13 5,234 => 13 5,234=>13
  • ( d ) (d) d压缩标签替换扩展标签
  • ( e ) (e) e数标签:比如在 G G G网络中,含有 1 1 1号标签 2 2 2个,那么第一个数字就是 2 2 2。这些标签的个数作为整个网络的新特征

算法:
假设要测试同构的两张图为 G G G G ’ G’ G,那么在结点 v v v的第 i i i次迭代里,算法都分别做了四步处理:标签复合集定义、复合集排序、标签压缩和重标签
在这里插入图片描述

  • W L   t e s t WL\ test WL test的复杂度是 O ( h m ) O(hm) O(hm),其中h为 i t e r a t i o n iteration iteration次数, m m m是一次 i t e r a t i o n iteration iteration m u l t i s e t multiset multiset的个数

一维的 W e i s f e i l e r − L e h m a n Weisfeiler-Lehman WeisfeilerLehman如下所示:
在这里插入图片描述
在这里插入图片描述
稳定后,统计两张图的 l a b e l label label的分布,如果分布相同,则一般认为两张图时同构的。
在这里插入图片描述
注意:我们可以发现, W L   t e s t WL\ test WL test方法的步骤和 G N N

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值