机器学习:逻辑回归

逻辑回归:线性回归的式子作为的输入(二分类问题)

逻辑回归应用场景:(也能得出概率值)

广告点击率

判断用户的性别

预测用户是否会购买给定的商品类

判断一条评论是正面的还是负面的

是否垃圾邮件,金融诈骗,虚假账号…

线性回归到逻辑回归:通过sigmoid函数

在这里插入图片描述
观察sigmoid函数得出,将输入转为0-1的值,正好是概率值。

逻辑回归公式:

在这里插入图片描述
e:2.71
z=回归的结果

输出:[0,1]区间的概率值,默认0.5作为阀值

:g(z)为sigmoid函数

逻辑回归的损失函数、优化(了解):

与线性回归原理相同,但由于是分类问题,
损失函数不一样,只能通过梯度下降求解

对数似然损失函数:
在这里插入图片描述
转换为:
在这里插入图片描述
当y=1时:
在这里插入图片描述
在这里插入图片描述

完整的损失函数:

在这里插入图片描述cost损失的值越小,那么预测的类别准确度更高

损失函数:均方误差(不存在多个局部最低点)只有一个最小值

对数似然损失:多个局部最小值

对数似然损失,可能找不到最小值,但是可以通过多次随机初始化,多次比较最小值结果或者求解过程中,调整学习率。尽量改善最小值

逻辑回归API:sklearn.linear_model.LogisticRegression

sklearn.linear_model.LogisticRegression(penalty=‘l2’, C = 1.0)
Logistic回归分类器
coef_:回归系数

逻辑回归案例:良/恶性乳腺肿瘤预测

原始数据的下载地址:
https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data

数据描述
(1)699条样本,共11列数据,第一列用语检索的id,后9列分别是与肿瘤
相关的医学特征,最后一列表示肿瘤类型的数值。
(2)包含16个缺失值,用”?”标出。

在这里插入图片描述
逻辑回归:那个类别少,判定概率值是值这个类别,判断概率小的那一个,为正例

pandas使用

pd.read_csv(’’,names=column_names)
column_names:指定类别名字,[‘Sample code number’,‘Clump Thickness’, ‘Uniformity of Cell Size’,‘Uniformity of Cell Shape’,‘Marginal Adhesion’, ‘Single Epithelial Cell Size’,‘Bare Nuclei’,‘Bland Chromatin’,‘Normal Nucleoli’,‘Mitoses’,‘Class’]
return:数据

replace(to_replace=’’,value=):返回数据
dropna():返回数据

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import  LogisticRegression
from sklearn.metrics import classification_report

def logistic():
    """逻辑回归做二分类进行癌症预测(根据细胞属性特征)"""

    # 构造列标签名字
    column = ['Sample code number', 'Clump Thickness', 'Uniformity of Cell Size', 'Uniformity of Cell Shape',
              'Marginal Adhesion', 'Single Epithelial Cell Size', 'Bare Nuclei', 'Bland Chromatin', 'Normal Nucleoli',
              'Mitoses', 'Class']
    # 读取数据
    data = pd.read_csv(
        "https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data",
        names=column)

    print(data)

    #缺失值进行处理
    data=data.replace(to_replace="?",value=np.nan)

    data=data.dropna()

    #进行数据分割
    x_train, x_test, y_train, y_test=train_test_split(data[column[1:10]],data[column[10]],test_size=0.25)

    #进行标准化处理

    std=StandardScaler()
    x_train=std.fit_transform(x_train)
    x_test=std.transform(x_test)
    #逻辑回归预测
    lg=LogisticRegression(C=1.0)
    lg.fit(x_train,y_train)
    print(lg.coef_)
    y_predict=lg.predict(x_test)
    print("准确率:",lg.score(x_test,y_test))
    print("召回率:",classification_report(y_test,y_predict,labels=[2,4],target_names=["良性","恶性"]))



    return None


if __name__ == '__main__':
    logistic()

在这里插入图片描述这里恶性的召回率是recall 0.95 这里可以看出我们还有五个人没有预测成功,所以后面需要调优参数,或者特征达到更优。召回率可以更加准确的看到结果的走向。

逻辑回归:总结

应用:广告点击率预测、电商购物搭配推荐

优点:适合需要得到一个分类概率的场景,简单,速度快

缺点:当特征空间很大时,逻辑回归的性能不是很好
(看硬件能力),不好处理多分类

生成模型和判别模型

逻辑回归:判别模型朴素贝叶斯:生成模型
解决问题二分类多分类
应用场景癌症,二分类需要概率文本分类
参数正则化力度没有
共同特点得出的结果都有概率解释得出的结果都有概率解释

判断:判别模型和生成模型看有没有先验概率

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值