【机器学习】【逻辑回归】最大似然估计的推导和求解步骤和梯度上升算法求解

本文介绍了逻辑回归的基础知识,包括其作为分类算法的特性、假设函数、似然函数和对数似然函数的推导。重点讲解了如何通过最大似然估计求解参数θ,并探讨了在参数个数不确定时,使用梯度上升算法的优势。此外,还对比了梯度下降与梯度上升算法的异同。
摘要由CSDN通过智能技术生成

伯努利分布

如果随机变量X∈{0, 1},并且相应的概率满足:

    P(X=1) = p,0<p<1

    P(X=0) = 1 - p

则称随机变量X服从参数为p的伯努利分布。

则随机变量X的概率密度函数为:


逻辑回归

    逻辑回归却不是回归算法而是一个分类算法~,线性回归是一个回归算法。逻辑回归的样本数据集是一个离散分布的样本集,逻辑回归的模型值不再是连续值,而是{0, 1}这样的离散值。在Logistic Regression中,需要一个假设:样本事件符合伯努利分布,即0-1分布、两点式分布。


逻辑回归的假设函数


逻辑回归的似然函数

逻辑回归的对数似然函数

在求逻辑回归的对数似然函数之前,先求预测函数hθ(

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值