伯努利分布
如果随机变量X∈{0, 1},并且相应的概率满足:
P(X=1) = p,0<p<1
P(X=0) = 1 - p
则称随机变量X服从参数为p的伯努利分布。
则随机变量X的概率密度函数为:
逻辑回归
逻辑回归却不是回归算法而是一个分类算法~,线性回归是一个回归算法。逻辑回归的样本数据集是一个离散分布的样本集,逻辑回归的模型值不再是连续值,而是{0, 1}这样的离散值。在Logistic Regression中,需要一个假设:样本事件符合伯努利分布,即0-1分布、两点式分布。
逻辑回归的假设函数
逻辑回归的似然函数
逻辑回归的对数似然函数
在求逻辑回归的对数似然函数之前,先求预测函数hθ(