用tushare数据自定义期货大宗商品指数(3)

本文介绍如何利用tushare获取的期货数据,存储到本地并读取,然后定义股票、期货和平均值指数。通过玻璃商品进行实战测试。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先把tushare获取的行情数据存入本地,再进行读取,这样如果更换数据源的话也可以直接利用

  • 定义读取行情数据的函数,并根据交易时间选择数据时间段
#######定义读取行情数据函数
def read_file(path,file_name,start_date,end_date):
    try:
        r=open(path+file_name,encoding='utf-8-sig')
        data=pd.read_csv(r)
        data=data.sort_values(by='trade_date',ascending=True)
        data=data.reset_index(drop=True)
        data['trade_date']=data['trade_date'].apply(int)
        data=data[data['trade_date']>=start_date] 
        data=data[data['trade_date']<=end_date]#####日期为int格式
        
    except:
        r=open(path+file_name,encoding='gbk')
        data=pd.read_csv(r)
        data=data.sort_values(by='trade_date',ascending=True)
        data=data.reset_index(drop=True)
        data['trade_date']=data['trade_date'].apply(int)
        data=data[data['trade_date']>=start_date] 
        data=data[data['trade_date']<=end_date]#####日期为int格式
    return data
  • 定义股票指数
#######定义股票指数
def stockindex(path_rele,fut_name,path_stock,path_sz,start_date,end_date):
    stock_list=[]
    ####获取交易日历
    df_cal=read_file(r'.\\data_cal\\','data_cal.csv',start_date,end_date)
    df_cal['cal_date']=df_cal['cal_date'].apply(int)
    ####定义一个只有交易日历的dataframe
    sz_data=pd.DataFrame(columns=['trade_date'])
    sz_data['trade_date']=df_cal.cal_date
    try:
        r=open(path_rele+fut_name+
智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识点解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“橙点同学”作为特定平台上的学习资名称,并不提供官方认证的标准答案集;建议通过正规渠道获教材并参加培训课程来准备此类资格认证考试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值