leetcode--分治算法

分治法的思想

把一个复杂的问题递归地分成若干子问题,知道子问题满足边界条件,停止递归。将子问题逐个击破,再将解决的子问题合并,得到原问题的答案。

分治法使用的情况

  • 该问题的规模缩小到一定的程度就可以容易地解决
  • 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
  • 利用该问题分解出的子问题的解可以合并为该问题的解;
  • 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
    【注】:第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法。

分治法的基本步骤

  • 确定终止条件
  • 分解成若干规模较小,相互独立,与原问题形式相同的子问题
  • 将各子问题的解合并为原问题的解

应用

class Solution(object):
    def majorityElement2(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        # 【不断切分的终止条件】
        if not nums:
            return None
        if len(nums) == 1:
            return nums[0]
        # 【准备数据,并将大问题拆分为小问题】
        left = self.majorityElement(nums[:len(nums)//2])
        right = self.majorityElement(nums[len(nums)//2:])
        # 【处理子问题,得到子结果】
        # 【对子结果进行合并 得到最终结果】
        if left == right:
            return left
        if nums.count(left) > nums.count(right):
            return left
        else:
            return right    
class Solution(object):
    def maxSubArray(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        # 【确定不断切分的终止条件】
        n = len(nums)
        if n == 1:
            return nums[0]

        # 【准备数据,并将大问题拆分为小的问题】
        left = self.maxSubArray(nums[:len(nums)//2])
        right = self.maxSubArray(nums[len(nums)//2:])

        # 【处理小问题,得到子结果】
        # 从右到左计算左边的最大子序和
        max_l = nums[len(nums)//2 -1] # max_l为该数组的最右边的元素
        tmp = 0 # tmp用来记录连续子数组的和
        
        for i in range( len(nums)//2-1 , -1 , -1 ):# 从右到左遍历数组的元素
            tmp += nums[i]
            max_l = max(tmp ,max_l)
            
        # 从左到右计算右边的最大子序和
        max_r = nums[len(nums)//2]
        tmp = 0
        for i in range(len(nums)//2,len(nums)):
            tmp += nums[i]
            max_r = max(tmp,max_r)
            
        # 【对子结果进行合并 得到最终结果】
        # 返回三个中的最大值
        return max(left,right,max_l+ max_r)
class Solution(object):
    def myPow(self, x, n):
        """
        :type x: float
        :type n: int
        :rtype: float
        """
        # 处理n为负的情况
        if n < 0 :
            x = 1/x
            n = -n
        # 【确定不断切分的终止条件】
        if n == 0 :
            return 1

        # 【准备数据,并将大问题拆分为小的问题】
        if n%2 ==1:
          # 【处理小问题,得到子结果】
          p = x * self.myPow(x,n-1)# 【对子结果进行合并 得到最终结果】
          return p
        return self.myPow(x*x,n/2)  

参考资料:
datawhale分治
五大常用算法之一:分治算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值