分治法的思想
把一个复杂的问题递归地分成若干子问题,知道子问题满足边界条件,停止递归。将子问题逐个击破,再将解决的子问题合并,得到原问题的答案。
分治法使用的情况
- 该问题的规模缩小到一定的程度就可以容易地解决
- 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
- 利用该问题分解出的子问题的解可以合并为该问题的解;
- 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
【注】:第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法。
分治法的基本步骤
- 确定终止条件
- 分解成若干规模较小,相互独立,与原问题形式相同的子问题
- 将各子问题的解合并为原问题的解
应用
class Solution(object):
def majorityElement2(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
# 【不断切分的终止条件】
if not nums:
return None
if len(nums) == 1:
return nums[0]
# 【准备数据,并将大问题拆分为小问题】
left = self.majorityElement(nums[:len(nums)//2])
right = self.majorityElement(nums[len(nums)//2:])
# 【处理子问题,得到子结果】
# 【对子结果进行合并 得到最终结果】
if left == right:
return left
if nums.count(left) > nums.count(right):
return left
else:
return right
class Solution(object):
def maxSubArray(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
# 【确定不断切分的终止条件】
n = len(nums)
if n == 1:
return nums[0]
# 【准备数据,并将大问题拆分为小的问题】
left = self.maxSubArray(nums[:len(nums)//2])
right = self.maxSubArray(nums[len(nums)//2:])
# 【处理小问题,得到子结果】
# 从右到左计算左边的最大子序和
max_l = nums[len(nums)//2 -1] # max_l为该数组的最右边的元素
tmp = 0 # tmp用来记录连续子数组的和
for i in range( len(nums)//2-1 , -1 , -1 ):# 从右到左遍历数组的元素
tmp += nums[i]
max_l = max(tmp ,max_l)
# 从左到右计算右边的最大子序和
max_r = nums[len(nums)//2]
tmp = 0
for i in range(len(nums)//2,len(nums)):
tmp += nums[i]
max_r = max(tmp,max_r)
# 【对子结果进行合并 得到最终结果】
# 返回三个中的最大值
return max(left,right,max_l+ max_r)
class Solution(object):
def myPow(self, x, n):
"""
:type x: float
:type n: int
:rtype: float
"""
# 处理n为负的情况
if n < 0 :
x = 1/x
n = -n
# 【确定不断切分的终止条件】
if n == 0 :
return 1
# 【准备数据,并将大问题拆分为小的问题】
if n%2 ==1:
# 【处理小问题,得到子结果】
p = x * self.myPow(x,n-1)# 【对子结果进行合并 得到最终结果】
return p
return self.myPow(x*x,n/2)
参考资料:
datawhale分治
五大常用算法之一:分治算法