一座长度为n的桥,起点的一端坐标为0,且在整数坐标i处有a[i]个石头【0<=a[i]<=4】, 一只青蛙从坐标0处开始起跳,一步可以跳的距离为1或2或3【即每一步都会落在整数点处】, 青蛙落在i处会踩着该点的所有石头,求青蛙跳出这座桥最少踩多少个石头?并且输出依次跳 过的坐标点路线,如果存在多种路线,输出字典序最小的那一条。
输入格式:
第一行整数n(<150000),接着下一行会有n+1个由空格隔开的整数,即桥上各个坐标处石头数量。
输出格式:
第一行为踩着最少石头个数,第二行为依次跳过的坐标点【字典序最小的】。
输入样例:
在这里给出两组输入。例如:
10
1 2 1 3 0 3 1 2 1 1 2
100
1 2 0 4 0 1 3 4 2 2 1 3 1 4 0 3 0 1 2 3 3 2 2 0 1 0 0 0 0 1 2 1 3 4 0 3 4 4 1 0
4 1 3 1 1 2 3 4 4 4 0 2 0 1 1 1 3 1 3 2 1 2 4 1 2 1 4 1 0 0 1 2 3 0 2 4 4 0 0 4
2 0 0 2 1 3 3 3 0 0 2 0 0 1 2 4 2 2 2 4 0
输出样例:
在这里给出对应的输出。例如:
4
0 2 4 6 8
36
0 2 4 5 8 10 12 14 16 17 20 23 25 26 27 28 31 34 35 38 39 41 44 47 50 52 54 57 60 63 65 68 69 70 73 74 77 78 81 82 85 88 89 91 92 94 97 100
解题
动态规划的状态转换方程简单,dp[n] = min{dp[n], dp[n - i] + a[n]} (1 =< i <= 3) dp[n]表示跳到n位置的最少石头数, 在这里设a[n +1] = 0,那么最终要求的最优解就是dp[n +1](>>很好理解的<<)
然而这题的一个难点就是输出路径并如果存在多种路线,输出字典序最小的那一条。问题是怎么输出字典序最小的路径???
首先要记录路径,我们会想到用一个path[]数组记录路径,一开始想要记录字典序最小就要优先选择位置靠前的。比如:
当我们以为这道题就可以轻松解决时,会发现这个算法是错误的。
如果dp[n - 1]前面的路径唯一且是0, 2, 3, …, n - 1; 而dp[n - 2]前面的路径唯一且是0, 2, 4, …, n - 2; 显然dp[n - 1]的字典序更小,而在上述算法中我们选择了更大的,这就不符合题意了。
这是我们就会想能不能每次选择前,都知道各个dp[k] ( k < n)的字典序的大小情况。
在这里,引入一个新的数组len[],表示青蛙跳到该步时的经过的站次数(记len[0] = 1),于是当每次发现求dp[n]有多个选择时,我们总是选择len[]的较大者,当然如果len相等就选择编号小的。
为什么要选择len[]较大的??
要加入的数的字典序最大,len越小,大的数越靠前,字典序越大。
如果当n = 9时,而dp[8] = dp[7],len[8] > len[7],此时应选dp[8]。由dp[8] == dp[7]可知,必存在k < 8 使得dp[k] <= dp[8],在这里假设len[8] = len[7] + 1,于是len[k] = len[7],现在只需证明k <= 7时选择8即可(自行理解),因为k的长度与7的长度相等。
显然k = 7时,选8。k < 7时,由于长度相等,自然越小的包括的小的数越多越靠前。(有点瞎鸡儿证明>>>)
现在推广len[8] = len[7] + t,t > 2, 。。。。(算了)
代码:
#include <iostream> //7-70 青蛙过桥 (30分)
#include <algorithm>
#include <cstring>
#include <stack>
using namespace std;
const int maxn = 1.5e5 + 2;
typedef long long ll;
ll a[maxn], dp[maxn];
ll path[maxn], len[maxn]; //路径及路径长度
int main()
{
int n;
cin >> n;
for (int i = 0; i <= n; i++)
cin >> a[i];
memset(dp, 0x3f, sizeof(dp));
memset(path, -1, sizeof(path));
dp[0] = a[0];
len[0] = 1;
for (int i = 1; i <= n + 1; i++)
for (int j = 1; j <= 3 && i >= j; j++)
if (dp[i] > dp[i - j] + a[i])
{
dp[i] = dp[i - j] + a[i];
path[i] = i - j;
len[i] = len[i - j] + 1;
}
else if(dp[i] == dp[i - j] + a[i]){
if(len[i] <= len[i - j] + 1) //注意是<=, 如果=选编号小的(这里先判断编号大的)
{
len[i] = len[i - j] + 1;
path[i] = i - j;
}
}
stack<ll> s;
for (int i = n + 1; path[i] >= 0LL; i = path[i])
s.push(path[i]);
cout << dp[n + 1] << endl;
while (!s.empty())
{
ll t = s.top();
s.pop();
if(s.empty())
cout << t;
else
cout << t << " ";
}
cout << endl;
system("pause");
return 0;
}