线段树

参考:https://oi-wiki.org/ds/seg/
在这里插入图片描述

1.建立线段树

void build(int s, int t, int p) {
  // 对 [s,t] 区间建立线段树,当前根的编号为 p
  if (s == t) {
    d[p] = a[s];
    return;
  }
  int m = (s + t) / 2;
  build(s, m, p * 2), build(m + 1, t, p * 2 + 1);
  // 递归对左右区间建树
  d[p] = d[p * 2] + d[(p * 2) + 1];
  // d[p] = max(d[p * 2], d[p * 2 + 1]);
}

2.区间查询

int getsum(int l, int r, int s, int t, int p) {
  // [l,r] 为查询区间,[s,t] 为当前节点包含的区间,p 为当前节点的编号
  if (l <= s && t <= r)
    return d[p];  // 当前区间为询问区间的子集时直接返回当前区间的和
  int m = (s + t) / 2, sum = 0;
  if (l <= m) sum += getsum(l, r, s, m, p * 2);
  // 如果左儿子代表的区间 [l,m] 与询问区间有交集,则递归查询左儿子
  if (r > m) sum += getsum(l, r, m + 1, t, p * 2 + 1);
  // 如果右儿子代表的区间 [m+1,r] 与询问区间有交集,则递归查询右儿子
  return sum;
}
int getMaxValue(int l, int r, int s, int t, int p) {
    // 要查询区间 [l ,r] 的最大值
    if (l <= s && r >= t) return d[p];  //所求区间包含了已知区间
    int m = (s + t) / 2;                //二分查找
    if (r <= m) {
        return getMaxValue(l, r, s, m, p * 2);
    } else if (l > m) {
        return getMaxValue(l, r, m + 1, t, p * 2 + 1);
    } else {
        return max(getMaxValue(l, m, s, m, p * 2),
                   getMaxValue(m + 1, r, m + 1, t, p * 2 + 1));
    }
}

3.区间修改与懒惰标记

区间修改(区间加上某个值):

void update(int l, int r, int c, int s, int t, int p) {
  // [l,r] 为修改区间,c 为被修改的元素的变化量,[s,t] 为当前节点包含的区间,p
  // 为当前节点的编号
  if (l <= s && t <= r) {
    d[p] += (t - s + 1) * c, b[p] += c;
    return;
  }  // 当前区间为修改区间的子集时直接修改当前节点的值,然后打标记,结束修改
  int m = (s + t) / 2;
  if (b[p] && s != t) {
    // 如果当前节点的懒标记非空,则更新当前节点两个子节点的值和懒标记值
    d[p * 2] += b[p] * (m - s + 1), d[p * 2 + 1] += b[p] * (t - m);
    b[p * 2] += b[p], b[p * 2 + 1] += b[p];  // 将标记下传给子节点
    b[p] = 0;                                // 清空当前节点的标记
  }
  if (l <= m) update(l, r, c, s, m, p * 2);
  if (r > m) update(l, r, c, m + 1, t, p * 2 + 1);
  d[p] = d[p * 2] + d[p * 2 + 1];
}

区间查询(区间求和):

int getsum(int l, int r, int s, int t, int p) {
  // [l,r] 为查询区间,[s,t] 为当前节点包含的区间,p为当前节点的编号
  if (l <= s && t <= r) return d[p];
  // 当前区间为询问区间的子集时直接返回当前区间的和
  int m = (s + t) / 2;
  if (b[p]) {
    // 如果当前节点的懒标记非空,则更新当前节点两个子节点的值和懒标记值
    d[p * 2] += b[p] * (m - s + 1), d[p * 2 + 1] += b[p] * (t - m),
        b[p * 2] += b[p], b[p * 2 + 1] += b[p];  // 将标记下传给子节点
    b[p] = 0;                                    // 清空当前节点的标记
  }
  int sum = 0;
  if (l <= m) sum = getsum(l, r, s, m, p * 2);
  if (r > m) sum += getsum(l, r, m + 1, t, p * 2 + 1);
  return sum;
}

如果你是要实现区间修改为某一个值而不是加上某一个值的话,代码如下:

void update(int l, int r, int c, int s, int t, int p) {
  if (l <= s && t <= r) {
    d[p] = (t - s + 1) * c, b[p] = c;
    return;
  }
  int m = (s + t) / 2;
  if (b[p]) {
    d[p * 2] = b[p] * (m - s + 1), d[p * 2 + 1] = b[p] * (t - m),
          b[p * 2] = b[p * 2 + 1] = b[p];
    b[p] = 0;
  }
  if (l <= m) update(l, r, c, s, m, p * 2);
  if (r > m) update(l, r, c, m + 1, t, p * 2 + 1);
  d[p] = d[p * 2] + d[p * 2 + 1];
}
int getsum(int l, int r, int s, int t, int p) {
  if (l <= s && t <= r) return d[p];
  int m = (s + t) / 2;
  if (b[p]) {
    d[p * 2] = b[p] * (m - s + 1), d[p * 2 + 1] = b[p] * (t - m),
          b[p * 2] = b[p * 2 + 1] = b[p];
    b[p] = 0;
  }
  int sum = 0;
  if (l <= m) sum = getsum(l, r, s, m, p * 2);
  if (r > m) sum += getsum(l, r, m + 1, t, p * 2 + 1);
  return sum;
}

4.一些优化

这里总结几个线段树的优化:

  1. 在叶子节点处无需下放懒惰标记,所以懒惰标记可以不下传到叶子节点。
  2. 下放懒惰标记可以写一个专门的函数 pushdown ,从儿子节点更新当前节点也可以写一个专门的函数 maintain (或者对称地用 pushup ),降低代码编写难度。
  3. 标记永久化,如果确定懒惰标记不会在中途被加到溢出(即超过了该类型数据所能表示的最大范围),那么就可以将标记永久化。标记永久化可以避免下传懒惰标记,只需在进行询问时把标记的影响加到答案当中,从而降低程序常数。具体如何处理与题目特性相关,需结合题目来写。这也是树套树和可持久化数据结构中会用到的一种技巧。
内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值