采用Levenberg-Marquardt(列文伯格-马夸尔特)算法求多维函数的最小值

列文-伯格马夸尔特算法继承了梯度法和牛顿法的优点,通过调整参数可以在两种算法中切换,该算法在求解函数最小值问题上具有优良特性,尤其是在求解最小问题中的多未知参数;
直接附上matlab代码:

% Set initial guess
x0 = [0; 0; 0];
% Define options for lsqnonlin
options = optimoptions('lsqnonlin','Algorithm','levenberg-marquardt','MaxIterations',1000);
% Call lsqnonlin to minimize the function
[x_min,~,~,~,~] = lsqnonlin(@rosenbrock,x0,[],[],options);
% Calculate the minimum value of the function
y_min = rosenbrock(x_min);
% Print the minimum value and corresponding point
fprintf('Minimum value: %f\n', y_min);
fprintf('Minimum point: (%f, %f, %f)\n', x_min(1), x_min(2), x_min(3));
function y = rosenbrock(x)
% Rosenbrock function
y = x(2)^2 +x(1)^2 + x(3)^2;
end

结果:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值