概率论与数理统计

11 篇文章 0 订阅
10 篇文章 0 订阅

概率论

全概率公式和贝叶斯公式

参考:浅谈全概率公式和贝叶斯公式Abner-CSDN博客贝叶斯公式和全概率公式的区别

1 条件概率

在事件 B B B 发生的条件下事件 A A A 发生的条件概率,记为 P ( A ∣ B ) P(A|B) P(AB)
P ( A ∣ B ) = P ( A B ) P ( B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A|B)=\cfrac{P(AB)}{P(B)}=\cfrac{P(B|A)P(A)}{P(B)} P(AB)=P(B)P(AB)=P(B)P(BA)P(A)
表示在给定条件发生变化后,导致事件发生的可能性发生变化

  • 相互独立:表示两个事件互不影响

  • 互斥:表示两个事件不能同时发生

  • 互斥事件一定不独立,独立事件一定不互斥


2 全概率公式

将复杂问题分解为简单问题而后逐一解决。对一个复杂事件求概率是,希望能将其分解为若干易于计算的简单事件之和。

对于试验 E E E A A A E E E 的事件, B 1 , B 2 , … , B n B_1, B_2, …, B_n B1,B2,,Bn 是其样本空间的一个划分,则
P ( A ) = P ( A ∣ B 1 ) P ( B 1 ) + P ( A ∣ B 2 ) P ( B 2 ) + ⋯ + P ( A ∣ B n ) P ( B n ) P(A) = P(A|B_1)P(B_1) +P(A|B_2)P(B_2)+\cdots+P(A|B_n)P(B_n) P(A)=P(AB1)P(B1)+P(AB2)P(B2)++P(ABn)P(Bn)
全概率公式表示达到某个目的,有多种方式(或者说造成某种结果,有多种原因),需要求得达到目的的概率(或者是造成这种结果的概率)?


3 贝叶斯公式

已知结果,计算导致该结果发生的第 i i i 种原因的可能性是多少?
P ( B i ∣ A ) = P ( B i A ) P ( A ) = P ( A ∣ B i ) P ( B i ) ∑ j = 1 n P ( A ∣ B j ) P ( B j )     ( i = 1 , 2 , ⋯   , n ) P(B_i|A) = \cfrac{P(B_iA)}{P(A)}=\cfrac{P(A|B_i)P(B_i)}{\sum_{j=1}^{n}{P(A|B_j)P(B_j)}}~~~(i=1,2,\cdots,n) P(BiA)=P(A)P(BiA)=j=1nP(ABj)P(Bj)P(ABi)P(Bi)   (i=1,2,,n)

随机变量及其分布

伯努利概型

  • 伯努利实验:实验只有两个结果: A A A A ‾ \overline{A} A
  • 伯努利概型:
    • 每次实验都是相互独立的
    • 每次实验有且仅有两种结果:事件 A A A 和事件 A ‾ \overline{A} A
    • 每次实验的结果发生的概率相同,即 P ( A ) = p P(A)=p P(A)=p P ( A ‾ ) = 1 − p = q P(\overline{A})=1-p=q P(A)=1p=q

离散型随机变量

1 0-1分布

随机变量 ξ \xi ξ 表示伯努利实验中“成功”出现的次数,则 ξ \xi ξ 取0,1两个值,且
p k = p k ( 1 − p ) 1 − k        ( k = 0 , 1 ; 0 < p < 1 ) p_k=p^k(1-p)^{1-k}~~~~~~(k=0,1;0<p<1) pk=pk(1p)1k      (k=0,1;0<p<1)
P ( ξ = 1 ) = p P(\xi=1)=p P(ξ=1)=p P ( ξ = 0 ) = 1 − p P(\xi=0)=1-p P(ξ=0)=1p

E ( X ) = p E(X)=p E(X)=p D ( X ) = p ( 1 − p ) D(X)=p(1-p) D(X)=p(1p)


2 二项分布

n n n 次伯努利实验中成功 k k k 次的概率
p k = C n k p k ( 1 − p ) n − k      ( k = 1 , 2 , ⋯   , n ; 0 < p < 1 ) p_k=C_n^kp^k(1-p)^{n-k}~~~~(k=1,2,\cdots,n;0<p<1) pk=Cnkpk(1p)nk    (k=1,2,,n;0<p<1)
E ( X ) = n p E(X)=np E(X)=np D ( X ) = n p ( 1 − p ) D(X)=np(1-p) D(X)=np(1p)


3 泊松分布

随机变量 ξ \xi ξ 取值 0,1,2,…,且分布列为
p k = P ( ξ = k ) = λ k e − λ k !      ( λ > 0 ; k = 0 , 1 , 2 , ⋯   ) p_k=P(\xi=k)=\cfrac{\lambda^ke^{-\lambda}}{k!}~~~~(\lambda>0;k=0,1,2,\cdots) pk=P(ξ=k)=k!λkeλ    (λ>0;k=0,1,2,)
泊松分布是二线分布当 n n n 趋近于无穷时的极限分布

E ( λ ) = λ E(\lambda)=\lambda E(λ)=λ D ( λ ) = λ D(\lambda)=\lambda D(λ)=λ

连续型随机变量

1 均匀分布
f ( x ) = { 1 b − a ,    a < x < b 0 ,    其 他 f(x)=\begin{cases} \cfrac{1}{b-a},~~a<x<b\\ 0,~~ 其他 \end{cases} f(x)=ba1,  a<x<b0,  
E ( X ) = ( a + b ) / 2 E(X)=(a+b)/2 E(X)=(a+b)/2 D ( X ) = ( b − a ) 2 / 12 D(X)=(b-a)^2/12 D(X)=(ba)2/12


2 指数分布

无记忆性
f ( x ) = { 1 θ e − x θ ,    x > 0 0 ,    其 他 f(x)=\begin{cases} \cfrac{1}{\theta}e^{-\cfrac{x}{\theta}},~~x>0\\ 0,~~ 其他 \end{cases} f(x)=θ1eθx,  x>00,  
E ( X ) = 1 / λ E(X)=1/\lambda E(X)=1/λ D ( X ) = 1 / λ 2 D(X)=1/\lambda^2 D(X)=1/λ2


3 正态分布
f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2     ( − ∞ < x < + ∞ ) f(x)=\cfrac{1}{\sqrt{2\pi}\sigma}e^{-\cfrac{(x-\mu)^2}{2\sigma^2}}~~~(-\infty<x<+\infty) f(x)=2π σ1e2σ2(xμ)2   (<x<+)
记为 ξ ∼ N ( μ , σ 2 ) \xi\sim N(\mu,\sigma^2) ξN(μ,σ2)

在一次实验中随机变量 ξ \xi ξ 落在区间 [ μ − 3 σ , μ + 3 σ ] [\mu-3\sigma,\mu+3\sigma] [μ3σ,μ+3σ] 内,几乎是肯定的,这个结论称为 3 σ 3\sigma 3σ 规则

协方差和相关系数

随机变量 X X X Y Y Y协方差,记为 C o v ( X , Y ) Cov(X,Y) Cov(X,Y) σ X Y \sigma_{XY} σXY ,即
σ X Y = C o v ( X , Y ) = E [ X − E ( X ) ] [ Y − E ( Y ) ] \sigma_{XY}=Cov(X,Y)=E[X-E(X)][Y-E(Y)] σXY=Cov(X,Y)=E[XE(X)][YE(Y)]
当 X = Y 时,方差等于协方差


随机变量 X X X Y Y Y相关系数,记为 ρ ( X , Y ) \rho(X,Y) ρ(X,Y) ρ X Y \rho_{XY} ρXY
C o v ( X , Y ) D ( X ) D ( Y ) \cfrac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}} D(X) D(Y) Cov(X,Y)
相关系数是两个随机变量线性联系密切程度的度量,越接近 1 表示线性相关的程度越好

大数定理与中心极限定理

怎样理解和区分中心极限定理与大数定律? - 猴子的回答 - 知乎

1 大数定理

如果统计数据足够大,那么事物出现的频率就能无限接近他的期望值

  • 切比雪夫大数定律:随机变量的均值依概率收敛期望的均值
  • 辛钦大数定律:增加了独立同分布的条件,随机变量序列的算数平均值依概率收敛于其期望值
  • 伯努利大数定理:在大量的重复独立实验中,事件发生的频率依概率收敛于事件发生的概率

2 中心极限定理

  • 任何一个样本的平均值将会约等于其所在总体的平均值

  • 不管总体是什么分布,任意一个总体的样本平均值都会围绕在总体的平均值周围,并且呈正态分布

作用:

  • 在没有办法得到总体全部数据的情况下,可以用样本来估计总体
  • 根据总体的平均值和标准差,判断某个样本是否属于总体

常用的中心极限定理

  • 独立同分布中心极限定理
  • 李雅普诺夫中心极限定理
  • 德莫弗-拉普拉斯中心极限定理

参数估计

极大似然估计法

一文搞懂极大似然估计 - 知乎 (zhihu.com)

提供了一种给定观察数据来评估模型参数的方差

求解极大似然估计的一般步骤:

  1. 由总体分布写出样本的概率密度函数
  2. 建立似然方程
  3. 求导取极值,解似然方程得参数的极大似然估计
  • 无偏性

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-xhNlRzgc-1626889760041)(C:\Users\RAINSUN\AppData\Roaming\Typora\typora-user-images\image-20210720183824363.png)]

  • 有效性

    [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-x9gcEfJn-1626889724710)(C:\Users\RAINSUN\AppData\Roaming\Typora\typora-user-images\image-20210720183856171.png)]

概率和统计的区别

  • 概率是已知模型和参数,推数据
  • 统计是已知数据,推模型和参数。

概率和似然的区别
P ( x ∣ θ ) P(x|\theta) P(xθ)
输入有两个:x表示某一个具体的数据;θ表示模型的参数。

  • 如果θ是已知确定的,x是变量,这个函数叫做概率函数(probability function),它描述对于不同的样本点x,其出现概率是多少。
  • 如果x是已知确定的,θ是变量,这个函数叫做似然函数(likelihood function), 它描述对于不同的模型参数,出现x这个样本点的概率是多少。

假设检验

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值