python解排队论问题M/M/C

这篇博客探讨了如何运用Python解决一道M/M/C排队论问题。问题背景是检验中心面临工厂检验需求,顾客到来率和服务时间分别服从泊松流和负指数分布。博主提供了Python代码来计算最小化总费用期望值所需的检验员数量。
摘要由CSDN通过智能技术生成

题目一

某检验中心为各工厂提供服务,要求做检验的工厂(顾客)的到来服从泊松流,平均到达率为每天48次,每次来检验由于停工等原因损失为6元,服务(做检验)时间服从负指数分布,平均服务率为每天25次,每设置1个检验员成本(工资及设备损耗)为每天4元,其他条件适合标准的M/M/C模型,问应该设几个检验员(及设备)才能使总费用的期望值为最小。

解答

python代码如下

# M/M/C模型计算最优服务台数C
import math  # 导入math模块
# Define the parameters
lambdas = 48  # Arrival rate
mu = 25  # Service rate
csw = 4/6
# Calculate rho计算rho
rho = lambdas / mu
L_dict = {
   }  # 创建一个空字典
a = 0  # 服务台数目

for a in 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值