[kuangbin带你飞]专题五 并查集---hdu--3038(带权并查集入门)

How Many Answers Are Wrong(HDU3038)

vj题目地址

转载自,(我这里只放了一道题,原博主放了几道题)

题意:

在这里插入图片描述
在这里插入图片描述

思路:

1.由于有很多对点的关系,建立带权并查集
2. 建立以左端点为子,右端点为祖先的带权并查集。
3. 由图中可知,当[1,4]确定和[3,4]确定时,添加[1,3]就可能会发生logic错误了。

在这里插入图片描述

1) 而从[1,2]很难转换到去求[1,4]-[3,4].所以这里有个小技巧,取开区间左端点,转换为求(0,2]=(0,4]-(2,4]的值
在这里插入图片描述
2) 又通过观察可得,当区间为(0,3](红线)时由于3为祖先,不在0,4,2这个并查集内,所以不考虑,那什么时候考虑呢??
绿线:当两个区间的,左和右端点是同一个并查集时。

在这里插入图片描述

反思:

  1. 带权并查集的模板
int find(int x)
{
    if(x==f[x])return x;
    int root=find(f[x]);
    dis[x]+=dis[f[x]];
    return f[x]=root;
}
  1. 合并时的代码。
	int A=find(a),B=find(b);
	f[A]=B;
        dis[A]=dis[b]-dis[a]+s;
  1. 区间的操作时(涉及向量,并查集)可以把某一端点变为开区间。

AC

#include <iostream>
#include <cstdio>
#include <cmath>
#define For(i,x,y) for(register int i=(x); i<=(y); i++)
using namespace std;
typedef long long ll;
const int maxn=2e5+10;
int a[maxn],f[maxn];
ll dis[maxn];
int find(int x)
{
    if(x==f[x])return x;
    int root=find(f[x]);
    dis[x]+=dis[f[x]];
    return f[x]=root;
}
int main()
{
    int n,m;
    while(~scanf("%d%d", &n,&m))
    {
        For(i,0,n)dis[i]=0,f[i]=i;
        int ans=0;
        For(i,1,m)
        {
            int a,b;
            ll s;
            scanf("%d%d%lld", &a, &b, &s);
            a--;
            int A=find(a),B=find(b);
            //cout<<dis[a]<<' '<<dis[b]<<endl;
            //find(a-1),find(b+1);
            //cout<<dis[a-1]<<' '<<dis[b+1]<<endl;
           // if(dis[b+1])cout<<"ok"<<endl;
           //cout<<(dis[a-1]||dis[b+1])<<endl;
           if(A==B)
           {
               if(abs(dis[b]-dis[a])!=s)ans++;
           }
            else if(A!=B)
            {
                //if(dis[a-1]||dis[b+1])
                //{
                    //cout<<abs(dis[b+1]-dis[a-1])<<endl;
                    //if(s!=abs(dis[b+1]-dis[a-1])){ans++;continue;}
                //}
                f[A]=B;
                dis[A]=dis[b]-dis[a]+s;
               // cout<<dis[A]<<' '<<A<<endl;
            }
        }
        printf("%d\n", ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值