数据结构---最小生成树(普利姆算法和克鲁斯卡尔算法)

本文探讨了数据结构中的最小生成树问题,详细介绍了如何使用普利姆算法和克鲁斯卡尔算法进行求解,并提供了完整的代码实现,最后通过测试验证了算法的正确性。
摘要由CSDN通过智能技术生成

存储结构

typedef struct
{
   
    char vexs[MAX];  //顶点表
    int arcs[MAX][MAX]; //邻接矩阵
    int arc,vex; //边和点数
}Graph;
//普利姆算法的closedge
struct
{
   
    char adjvex;
    int lowcost;
}closedge[MAX];
//克鲁斯卡尔算法的 edge
typedef struct
{
   
    char head,tail;
    int lowcost;
}ed;

普利姆:

void prim(Graph G,char c)
{
   
    int i,j,k;
    k=locate(G,c);
    closedge[k].lowcost=0;
    //赋初值
    for(i=0;i<G.vex;i++)
    {
   
        if(i!=k)
        {
   
            closedge[i].adjvex=c;
            closedge[i].lowcost=G.arcs[k][i];
        }
    }
    for(i=1;i<G.vex;i++)
    {
   
        int min=10000000;
        j=0;k=0;
        //找最小的,k记录
        for(j=0;j<G.vex;j++)
        {
   
            if(closedge[j].lowcost!=0&&closedge[j].lowcost<min)
            {
   
                min=closedge[j].lowcost;
                k=j;
            }
        }
        printf("%c-%c权值:%d ",closedge[k].adjvex,G.vexs[k],closedge[k].lowcost);
        closedge[k].lowcost=0;
        for(j=0;j<G.vex;j++)
        {
   
            if(closedge[j].lowcost!=0&&G.arcs[k][j]<closedge[j].lowcost)
            {
   
                closedge[j].lowcost=G.arcs[k][j];
                closedge[j].adjvex=G.vexs[k];
            }
        }
    }
}

克鲁斯卡尔

void kruskal(Graph G)
{
   
    ed edge[G.arc];
    int vexset[MAX];
    int i,j,k;
    k=0;
    //为edge数组赋值
    for(i=0;i
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值