第一章 概论
统计学习的目标在于:从假设空间中选取最优模型
统计学方法三要素:方法=模型+策略+算法
训练集用来训练模型,验证集用来选择模型,测试集用于对学习方法的评估。
1、输入变量和输出变量均为连续变量的预测问题称为回归问题,输出变量均为有限个离散变量的预测问题称为分类问题,输入变量和输出变量均为变量序列的预测问题称为标注问题
2、监督学习:
3、无监督学习:
4、模型:所要学习的条件概率分布或决策函数。
模型的假设空间:包括所有可能的条件概率分布或决策函数。
5、两个基本策略:经验风险最小化和结构风险最小化(正则化方法)
6、学习方法的评估标准:基于损失函数模型的训练误差和测试误差
7、泛化能力:对未知数据的预测能力
8、过拟合:对训练数据的预测能力很好,但是对未知数据的预测很差。<