统计学习方法——李航 笔记

本文是李航《统计学习方法》的笔记,介绍了统计学习的目标、方法、评估标准和模型选择策略,如经验风险最小化、结构风险最小化、正则化和交叉验证。接着详细讨论了感知机、k近邻法、朴素贝叶斯法,并简述了线性回归中的逻辑回归和决策树的基本原理和应用。
摘要由CSDN通过智能技术生成

第一章 概论

统计学习的目标在于:从假设空间中选取最优模型

统计学方法三要素:方法=模型+策略+算法
训练集用来训练模型,验证集用来选择模型,测试集用于对学习方法的评估。

1、输入变量和输出变量均为连续变量的预测问题称为回归问题,输出变量均为有限个离散变量的预测问题称为分类问题,输入变量和输出变量均为变量序列的预测问题称为标注问题

2、监督学习:
在这里插入图片描述
3、无监督学习:
在这里插入图片描述
4、模型:所要学习的条件概率分布或决策函数。
模型的假设空间:包括所有可能的条件概率分布或决策函数。

5、两个基本策略:经验风险最小化结构风险最小化(正则化方法)

6、学习方法的评估标准:基于损失函数模型的训练误差测试误差

7、泛化能力:对未知数据的预测能力

8、过拟合:对训练数据的预测能力很好,但是对未知数据的预测很差。<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值