统计学习方法——李航 笔记

本文是李航《统计学习方法》的笔记,介绍了统计学习的目标、方法、评估标准和模型选择策略,如经验风险最小化、结构风险最小化、正则化和交叉验证。接着详细讨论了感知机、k近邻法、朴素贝叶斯法,并简述了线性回归中的逻辑回归和决策树的基本原理和应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一章 概论

统计学习的目标在于:从假设空间中选取最优模型

统计学方法三要素:方法=模型+策略+算法
训练集用来训练模型,验证集用来选择模型,测试集用于对学习方法的评估。

1、输入变量和输出变量均为连续变量的预测问题称为回归问题,输出变量均为有限个离散变量的预测问题称为分类问题,输入变量和输出变量均为变量序列的预测问题称为标注问题

2、监督学习:
在这里插入图片描述
3、无监督学习:
在这里插入图片描述
4、模型:所要学习的条件概率分布或决策函数。
模型的假设空间:包括所有可能的条件概率分布或决策函数。

5、两个基本策略:经验风险最小化结构风险最小化(正则化方法)

6、学习方法的评估标准:基于损失函数模型的训练误差测试误差

7、泛化能力:对未知数据的预测能力

8、过拟合:对训练数据的预测能力很好,但是对未知数据的预测很差。<

李航的《统计学习方法》是一本经典的统计学习教材,其中涵盖了统计学习的基本理论和方法。该书主要介绍了统计学习的三要素:模型、策略和算法。引用提到,训练集用来训练模型,验证集用来选择模型,测试集用于对学习方法的评估。这些三要素是统计学习方法的基础。引用进一步解释了统计学习的目标,即通过构建概率统计模型对数据进行准确的预测与分析,并提高学习效率。引用提到了一种常用的统计学习方法,即提升(boosting),它通过改变训练样本的权重,学习多个弱分类器,并将它们线性组合成一个强分类器,以提高分类的性能。 总结起来,李航的《统计学习方法笔记主要围绕统计学习的基本理论和方法展开,介绍了统计学习的三要素、目标和提升等常用方法。这本书对于学习统计学习的人来说是一本非常有价值的参考资料。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [统计学习方法——李航 笔记](https://blog.csdn.net/qq_45383347/article/details/110482540)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [李航统计学习方法》学习笔记](https://blog.csdn.net/liuzuoping/article/details/98840923)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值