YOLOv8(Ultralytics)从断点处继续训练(Resume)

使用官方脚本命令训练时的断点继续训练方法。

训练时的命令(总共训练100epoch):

yolo detect train data=./ultralytics/cfg/datasets/coco.yaml model=./ultralytics/cfg/models/v8/yolov8.yaml project=./run/yolov8/ epochs=100

情况1:还未训练完100epoch,希望继续训练。

方法:将model替换为训练中途的last.pt文件,并且添加resume=True。

detect train data=./ultralytics/cfg/datasets/coco.yaml model=./run/yolov8/train/weights/last.pt project=./run/yolov8/ epochs=100 resume=True

结果:模型将会从断点处开始训练直到100epoch结束。

情况2:已经训练完100epoch,希望增加训练epoch(增加500epoch)。

方法:将epochs替换为500,并且将已有的权重作为pretrained进行加载。

yolo detect train data=./ultralytics/cfg/datasets/coco.yaml model=./ultralytics/cfg/models/v8/yolov8.yaml project=./run/yolov8/ epochs&#
<think>嗯,用户问的是如何在YOLOv8中暂停训练并从断点重启。我需要先回想一下YOLOv8的相关知识。记得YOLOv8Ultralytics开发的,他们的文档里应该有训练相关的参数。暂停和恢复训练通常涉及到保存检查点,也就是checkpoints。 首先,用户可能需要知道如何设置参数来保存检查点。YOLO训练命令里有个参数是save_period,可以设置每隔多少epoch保存一次。或者默认情况下,可能每个epoch结束后都会保存?需要确认一下。比如,使用yolo train时,加上save_period参数,比如save_period=1,这样每个epoch都保存,但如果是默认的话,可能不需要特别设置,因为Ultralytics的框架可能默认保存最新的模型为last.pt。 接下来,当训练被中断后,如何从断点恢复呢。这时候应该使用resume参数,将resume设置为True,或者在命令行中指定resume参数,指向last.pt文件。这样训练会从上次保存的模型继续。 不过,用户可能会遇到问题,比如如何正确设置路径,或者如果训练中途停止,如何确保resume能找到正确的文件。可能需要检查保存的模型路径是否存在,比如在runs/train/exp目录下的last.pt。 另外,需要注意的细节是,当使用resume时,优化器的状态、epoch计数等信息也应该被正确加载,这样才能无缝继续训练。这需要框架本身支持断点续训的功能,而YOLOv8应该是支持的,因为很多现代框架都有这个功能。 还有,用户可能想知道是否可以在不同的环境下恢复训练,比如换了机器或者GPU,这时候需要确保环境兼容,可能需要注意CUDA版本或者依赖库的版本是否一致,否则可能会出现兼容性问题。 总结一下,步骤应该是:1. 确保训练时保存了检查点;2. 使用resume参数指向last.pt来恢复训练。同时提醒用户检查文件路径和保存设置是否正确,确保能够成功加载模型和参数。</think>在 YOLOv8 中暂停训练并从断点重启,可以通过以下步骤实现: --- ### **1. 保存检查点(Checkpoint)** YOLOv8 默认在训练过程中会自动保存**最新权重**(`last.pt`)和**最佳权重**(`best.pt`)。若需手动暂停训练: - 直接终止训练进程(如 `Ctrl+C` 或关闭终端),此时 `last.pt` 会保留最新进度。 --- ### **2. 从断点重启训练** 使用 `resume` 参数指定 `last.pt` 路径即可从断点恢复训练: #### **命令行示例** ```bash yolo train resume model=last.pt data=your_dataset.yaml epochs=100 imgsz=640 ``` #### **Python 代码示例** ```python from ultralytics import YOLO model = YOLO("last.pt") # 加载断点检查点 model.train(resume=True) # 设置 resume=True 继续训练 ``` --- ### **关键参数说明** - `resume=True`:强制从 `last.pt` 恢复训练(需确保文件存在)。 - 自动继承上次训练的配置(如数据集、超参数等),无需重复指定。 --- ### **注意事项** 1. **检查点路径**:确保 `last.pt` 在正确路径下(默认在 `runs/train/exp/weights/`)。 2. **环境一致性**:恢复训练时的环境(CUDA、库版本)需与原训练一致。 3. **自定义保存频率**:通过 `save_period=n` 设置每 `n` 个 epoch 保存一次检查点。 --- 通过上述方法,可无缝暂停并恢复 YOLOv8 训练,避免重复计算。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值