前言
这篇讲的就是main_classification.py
这个代码,原文文章及GitHub链接在下面,
文章链接🔗
main_classification.py
库文件就不提了。。。。。。
1.打开.pkl
文件
下面的代码就是打开.pkl
文件
# Load data打开pkl
print('...loading training data')
f = open('data.pkl', 'rb')
x = pickle.load(f)
f.close()
f = open('data_age.pkl', 'rb')
y = pickle.load(f)
f.close()
f = open('data_gender.pkl','rb')
gender = pickle.load(f)
f.close()
x = np.asarray(x, dtype=np.float32)#转化为矩阵
y = np.asarray(y)
gender = np.asarray(gender)
x /= 255.#对图像进行归一化,范围为[0, 1]
gender =2*( gender-0.5)#将[0,1]转为[-1,1]
x_final = []
y_final = []
gender_final = []
2.然后随机将图像分为训练集、验证集、测试集
首先,输入前面处理过的归一化的图片
用八张图片做了个测试
>print(x.shape[0])
>>>8
>print(random_no)
>>>[0 1 2 3 4 5 6 7]
>np.random.shuffle(random_no)
>>>[6 2 1 7 3 0 5 4]
# 随机处理图像并将其拆分为训练集、验证集和测试集
#random_no = np.random.choice(x.shape[0], size=x.shape[0], replace=False)
random_no = np.arange(x.shape[0])#x.shape[0]--图片的数量;输出图片个数的一个数组,默认步长为1
np.random.seed(0)
np.random.shuffle(random_no)#打乱顺序
for i in random_no:
x_final.append(x[i,:,:,:])#将i张图片加入到x_final
y_final.append(y[i])
gender_final.append(gender[i])
输出如下,反正就是将所有的图片加入x_final
,因为x是图片的像素矩阵,太多了,不容易看清,就拿y_final
举例,输出如下。
>print(y_final )
>>>[108]
[108, 150]
[108, 150, 168]
[108, 150, 168, 168]
[108, 150, 168, 168, 94]
[108, 150, 168, 168, 94, 36]
[108, 150, 168, 168, 94, 36, 120]
[108, 150, 168, 168, 94, 36, 120, 168]
>print (y_final[:5])
>>>[108 150 168 168 94]
>print (gender_final[:5])
>>>[ 1. 1. 1. 1. -1.]
然后,将其随机分成三总集合,便于后面的模型训练
np.asarray
是将输入转为矩阵格式。当输入是列表的时候,更改列表的值并不会影响转化为矩阵的值。
x_final = np.asarray(x_final)
y_final = np.asarray(y_final)
gender_final = np.asarray(gender_final)
print (y_final[:50])#打印前50个
print (gender_final[:50])
k = 500 # Decides split count决定分裂计数
x_test = x_final[:k,:,:,:]#前k个img作为test
y_test = y_final[:k]
gender_test = gender_final[:k]
x_valid = x_final[k:2*k,:,:,:]
y_valid = y_final[k:2*k]#取k——>2k为y_valid验证集
gender_valid = gender_final[k:2*k]
x_train = x_final[2*k:,:,:,:]#训练集就是2k到最后个个图像
y_train = y_final[2*k:]
gender_train = gender_final[2*k:]
##
#y_test = keras.utils.to_categorical(y_test,240)
#y_train = keras.utils.to_categorical(y_train,240)
#y_valid = keras.utils.to_categorical(y_valid,240)
y_train = softlabel(y_train,240)
y_valid = softlabel(y_valid,240)
y_test = softlabel(y_test,240)
print (y_train[0,:])
print ('x_train shape:'+ str(x_train.shape))
print ('y_train shape:'+ str(y_train.shape))
print ('gender_train shape:'+ str(gender_train.shape))
print ('x_valid shape:'+ str(x_valid.shape))
print ('y_valid shape:'+ str(y_valid.shape))
print ('gender_valid shape:' + str(gender_valid.shape))
print ('x_test shape:'+ str(x_test.shape))
print ('y_test shape:'+ str(y_test.shape))
用八张图片做了个测试。。。整个数据集太大了 恕我的电脑不允许,选几张意思一下
...loading training data
x_train shape:(4, 300, 300, 3)#选了4张作为训练集后面的(300,300,3)是图片的长、宽、通道数
y_train shape:(4, 240)#训练的label有240类就是240个月
gender_train shape:(4,)#gender类别
x_valid shape:(2, 300, 300, 3)#验证集有2张
y_valid shape:(2, 240)
gender_valid shape:(2,)
x_test shape:(2, 300, 300, 3)#测试集2张
y_test shape:(2, 240)
再做了一个测试看看到底截取的是哪部分图片作为相应的集合
>k=2
>print(y_final)
>>>[108 150 168 168 94 36 120 168]
>print((y_train = y_final[2*k:]))#训练集选取的是从2k个图片开始到最后
>>>[ 94 36 120 168]
>print((y_test = y_final[:k]))#测试集是0——>k个图片,即前k个
>>>[108 150]
>print(y_valid = y_final[k:2*k])#第k到第2k张图片
>>>[168 168]
注意上面代码中的softlabel()
是软标签,是自定义函数func_utils
定义的函数,可以参考论文
原文是这样写的“ 当我们使用原始的一热标签进行培训时,
网络无法收敛。我们认为原因是那只手不同年龄的图像相似,但有不同的一个热点标签。因此,我们使用软标签进行训练”
def softlabel(label,num_class):
softlabel=np.zeros((len(label),num_class))
ratio = 1.0/50#1/l
for i in range(len(label)):
for j in range(num_class):
softlabel[i,j]=1.0 - ratio*np.abs(j-label[i])#论文中的i=j=num_class;论文中t=label[i]
softlabel = np.maximum(softlabel,0)
return softlabel
3.预训练模型
预训练InceptionV3模型,使用imagenet的权重
想要了解模型原理,戳下面InceptionNet-V3
base_model = InceptionV3(weights='imagenet', include_top=False)
for i,layer in enumerate(base_model.layers):
print (i,layer.name)
input = Input(shape=(300,300,3),name='input1')#输入的是(300,300,3)的图片
input_gender = Input(shape=(1,),dtype='float32',name='input2')
output = base_model(input)#将input输入model里
gender_embedding=Dense(16)(input_gender)#gender就链接一个全连接层
print (K.int_shape(output))
x = keras.layers.MaxPooling2D(pool_size=(8,8))(output)
print (K.int_shape(x))
x=Flatten()(x)
f = keras.layers.Concatenate(axis=1)([x,gender_embedding])
print (K.int_shape(f))
predictions = Dense(240)(x)
输出的时候加一个model.summary
不然输出看不懂。。。一长串,也没有指明连接点
Model: "inception_v3"
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_1 (InputLayer) (None, None, None, 3 0
__________________________________________________________________________________________________
conv2d_1 (Conv2D) (None, None, None, 3 864 input_1[0][0]
__________________________________________________________________________________________________
batch_normalization_1 (BatchNor (None, None, None, 3 96 conv2d_1[0][0]
__________________________________________________________________________________________________
activation_1 (Activation) (None, None, None, 3 0 batch_normalization_1[0][0]
__________________________________________________________________________________________________
conv2d_2 (Conv2D) (None, None, None, 3 9216 activation_1[0][0]
__________________________________________________________________________________________________
batch_normalization_2 (BatchNor (None, None, None, 3 96 conv2d_2[0][0]
__________________________________________________________________________________________________
activation_2 (Activation) (None, None, None, 3 0 batch_normalization_2[0][0]
__________________________________________________________________________________________________
conv2d_3 (Conv2D) (None, None, None, 6 18432 activation_2[0][0]
__________________________________________________________________________________________________
batch_normalization_3 (BatchNor (None, None, None, 6 192 conv2d_3[0][0]
__________________________________________________________________________________________________
activation_3 (Activation) (None, None, None, 6 0 batch_normalization_3[0][0]
__________________________________________________________________________________________________
max_pooling2d_1 (MaxPooling2D) (None, None, None, 6 0 activation_3[0][0]
__________________________________________________________________________________________________
conv2d_4 (Conv2D) (None, None, None, 8 5120 max_pooling2d_1[0][0]
__________________________________________________________________________________________________
batch_normalization_4 (BatchNor (None, None, None, 8 240 conv2d_4[0][0]
__________________________________________________________________________________________________
activation_4 (Activation) (None, None, None, 8 0 batch_normalization_4[0][0]
__________________________________________________________________________________________________
conv2d_5 (Conv2D) (None, None, None, 1 138240 activation_4[0][0]
__________________________________________________________________________________________________
batch_normalization_5 (BatchNor (None, None, None, 1 576 conv2d_5[0][0]
__________________________________________________________________________________________________
activation_5 (Activation) (None, None, None, 1 0 batch_normalization_5[0][0]
__________________________________________________________________________________________________
max_pooling2d_2 (MaxPooling2D) (None, None, None, 1 0 activation_5[0][0]
__________________________________________________________________________________________________
conv2d_9 (Conv2D) (None, None, None, 6 12288 max_pooling2d_2[0][0]
__________________________________________________________________________________________________
batch_normalization_9 (BatchNor (None, None, None, 6 192 conv2d_9[0][0]
__________________________________________________________________________________________________
activation_9 (Activation) (None, None, None, 6 0 batch_normalization_9[0][0]
__________________________________________________________________________________________________
conv2d_7 (Conv2D) (None, None, None, 4 9216 max_pooling2d_2[0][0]
__________________________________________________________________________________________________
conv2d_10 (Conv2D) (None, None, None, 9 55296 activation_9[0][0]
__________________________________________________________________________________________________
batch_normalization_7 (BatchNor (None, None, None, 4 144 conv2d_7[0][0]
__________________________________________________________________________________________________
batch_normalization_10 (BatchNo (None, None, None, 9 288 conv2d_10[0][0]
__________________________________________________________________________________________________
activation_7 (Activation) (None, None, None, 4 0 batch_normalization_7[0][0]
__________________________________________________________________________________________________
activation_10 (Activation) (None, None, None, 9 0 batch_normalization_10[0][0]
__________________________________________________________________________________________________
average_pooling2d_1 (AveragePoo (None, None, None, 1 0 max_pooling2d_2[0][0]
__________________________________________________________________________________________________
conv2d_6 (Conv2D) (None, None, None, 6 12288 max_pooling2d_2[0][0]
__________________________________________________________________________________________________
conv2d_8 (Conv2D) (None, None, None, 6 76800 activation_7[0][0]
__________________________________________________________________________________________________
conv2d_11 (Conv2D) (None, None, None, 9 82944 activation_10[0][0]
__________________________________________________________________________________________________
conv2d_12 (Conv2D) (None, None, None, 3 6144 average_pooling2d_1[0][0]
__________________________________________________________________________________________________
batch_normalization_6 (BatchNor (None, None, None, 6 192 conv2d_6[0][0]
__________________________________________________________________________________________________
batch_normalization_8 (BatchNor (None, None, None, 6 192 conv2d_8[0][0]
__________________________________________________________________________________________________
batch_normalization_11 (BatchNo (None, None, None, 9 288 conv2d_11[0][0]
__________________________________________________________________________________________________
batch_normalization_12 (BatchNo (None, None, None, 3 96 conv2d_12[0][0]
__________________________________________________________________________________________________
activation_6 (Activation) (None, None, None, 6 0 batch_normalization_6[0][0]
__________________________________________________________________________________________________
activation_8 (Activation) (None, None, None, 6 0 batch_normalization_8[0][0]
__________________________________________________________________________________________________
activation_11 (Activation) (None, None, None, 9 0 batch_normalization_11[0][0]
__________________________________________________________________________________________________
activation_12 (Activation) (None, None, None, 3 0 batch_normalization_12[0][0]
__________________________________________________________________________________________________
mixed0 (Concatenate) (None, None, None, 2 0 activation_6[0][0]
activation_8[0][0]
activation_11[0][0]
activation_12[0][0]
__________________________________________________________________________________________________
conv2d_16 (Conv2D) (None, None, None, 6 16384 mixed0[0][0]
__________________________________________________________________________________________________
batch_normalization_16 (BatchNo (None, None, None, 6 192 conv2d_16[0][0]
__________________________________________________________________________________________________
activation_16 (Activation) (None, None, None, 6 0 batch_normalization_16[0][0]
__________________________________________________________________________________________________
conv2d_14 (Conv2D) (None, None, None, 4 12288 mixed0[0][0]
__________________________________________________________________________________________________
conv2d_17 (Conv2D) (None, None, None, 9 55296 activation_16[0][0]
__________________________________________________________________________________________________
batch_normalization_14 (BatchNo (None, None, None, 4 144 conv2d_14[0][0]
__________________________________________________________________________________________________
batch_normalization_17 (BatchNo (None, None, None, 9 288 conv2d_17[0][0]
__________________________________________________________________________________________________
activation_14 (Activation) (None, None, None, 4 0 batch_normalization_14[0][0]
__________________________________________________________________________________________________
activation_17 (Activation) (None, None, None, 9 0 batch_normalization_17[0][0]
__________________________________________________________________________________________________
average_pooling2d_2 (AveragePoo (None, None, None, 2 0 mixed0[0][0]
__________________________________________________________________________________________________
conv2d_13 (Conv2D) (None, None, None, 6 16384 mixed0[0][0]
__________________________________________________________________________________________________
conv2d_15 (Conv2D) (None, None, None, 6 76800 activation_14[0][0]
__________________________________________________________________________________________________
conv2d_18 (Conv2D) (None, None, None, 9 82944 activation_17[0][0]
__________________________________________________________________________________________________
conv2d_19 (Conv2D) (None, None, None, 6 16384 average_pooling2d_2[0][0]
__________________________________________________________________________________________________
batch_normalization_13 (BatchNo (None, None, None, 6 192 conv2d_13[0][0]
__________________________________________________________________________________________________
batch_normalization_15 (BatchNo (None, None, None, 6 192 conv2d_15[0][0]
__________________________________________________________________________________________________
batch_normalization_18 (BatchNo (None, None, None, 9 288 conv2d_18[0][0]
__________________________________________________________________________________________________
batch_normalization_19 (BatchNo (None, None, None, 6 192 conv2d_19[0][0]
__________________________________________________________________________________________________
activation_13 (Activation) (None, None, None, 6 0 batch_normalization_13[0][0]
__________________________________________________________________________________________________
activation_15 (Activation) (None, None, None, 6 0 batch_normalization_15[0][0]
__________________________________________________________________________________________________
activation_18 (Activation) (None, None, None, 9 0 batch_normalization_18[0][0]
__________________________________________________________________________________________________
activation_19 (Activation) (None, None, None, 6 0 batch_normalization_19[0][0]
__________________________________________________________________________________________________
mixed1 (Concatenate) (None, None, None, 2 0 activation_13[0][0]
activation_15[0][0]
activation_18[0][0]
activation_19[0][0]
__________________________________________________________________________________________________
conv2d_23 (Conv2D) (None, None, None, 6 18432 mixed1[0][0]
__________________________________________________________________________________________________
batch_normalization_23 (BatchNo (None, None, None, 6 192 conv2d_23[0][0]
__________________________________________________________________________________________________
activation_23 (Activation) (None, None, None, 6 0 batch_normalization_23[0][0]
__________________________________________________________________________________________________
conv2d_21 (Conv2D) (None, None, None, 4 13824 mixed1[0][0]
__________________________________________________________________________________________________
conv2d_24 (Conv2D) (None, None, None, 9 55296 activation_23[0][0]
__________________________________________________________________________________________________
batch_normalization_21 (BatchNo (None, None, None, 4 144 conv2d_21[0][0]
__________________________________________________________________________________________________
batch_normalization_24 (BatchNo (None, None, None, 9 288 conv2d_24[0][0]
__________________________________________________________________________________________________
activation_21 (Activation) (None, None, None, 4 0 batch_normalization_21[0][0]
__________________________________________________________________________________________________
activation_24 (Activation) (None, None, None, 9 0 batch_normalization_24[0][0]
__________________________________________________________________________________________________
average_pooling2d_3 (AveragePoo (None, None, None, 2 0 mixed1[0][0]
__________________________________________________________________________________________________
conv2d_20 (Conv2D) (None, None, None, 6 18432 mixed1[0][0]
__________________________________________________________________________________________________
conv2d_22 (Conv2D) (None, None, None, 6 76800 activation_21[0][0]
__________________________________________________________________________________________________
conv2d_25 (Conv2D) (None, None, None, 9 82944 activation_24[0][0]
__________________________________________________________________________________________________
conv2d_26 (Conv2D) (None, None, None, 6 18432 average_pooling2d_3[0][0]
__________________________________________________________________________________________________
batch_normalization_20 (BatchNo (None, None, None, 6 192 conv2d_20[0][0]
__________________________________________________________________________________________________
batch_normalization_22 (BatchNo (None, None, None, 6 192 conv2d_22[0][0]
__________________________________________________________________________________________________
batch_normalization_25 (BatchNo (None, None, None, 9 288 conv2d_25[0][0]
__________________________________________________________________________________________________
batch_normalization_26 (BatchNo (None, None, None, 6 192 conv2d_26[0][0]
__________________________________________________________________________________________________
activation_20 (Activation) (None, None, None, 6 0 batch_normalization_20[0][0]
__________________________________________________________________________________________________
activation_22 (Activation) (None, None, None, 6 0 batch_normalization_22[0][0]
__________________________________________________________________________________________________
activation_25 (Activation) (None, None, None, 9 0 batch_normalization_25[0][0]
__________________________________________________________________________________________________
activation_26 (Activation) (None, None, None, 6 0 batch_normalization_26[0][0]
__________________________________________________________________________________________________
mixed2 (Concatenate) (None, None, None, 2 0 activation_20[0][0]
activation_22[0][0]
activation_25[0][0]
activation_26[0][0]
__________________________________________________________________________________________________
conv2d_28 (Conv2D) (None, None, None, 6 18432 mixed2[0][0]
__________________________________________________________________________________________________
batch_normalization_28 (BatchNo (None, None, None, 6 192 conv2d_28[0][0]
__________________________________________________________________________________________________
activation_28 (Activation) (None, None, None, 6 0 batch_normalization_28[0][0]
__________________________________________________________________________________________________
conv2d_29 (Conv2D) (None, None, None, 9 55296 activation_28[0][0]
__________________________________________________________________________________________________
batch_normalization_29 (BatchNo (None, None, None, 9 288 conv2d_29[0][0]
__________________________________________________________________________________________________
activation_29 (Activation) (None, None, None, 9 0 batch_normalization_29[0][0]
__________________________________________________________________________________________________
conv2d_27 (Conv2D) (None, None, None, 3 995328 mixed2[0][0]
__________________________________________________________________________________________________
conv2d_30 (Conv2D) (None, None, None, 9 82944 activation_29[0][0]
__________________________________________________________________________________________________
batch_normalization_27 (BatchNo (None, None, None, 3 1152 conv2d_27[0][0]
__________________________________________________________________________________________________
batch_normalization_30 (BatchNo (None, None, None, 9 288 conv2d_30[0][0]
__________________________________________________________________________________________________
activation_27 (Activation) (None, None, None, 3 0 batch_normalization_27[0][0]
__________________________________________________________________________________________________
activation_30 (Activation) (None, None, None, 9 0 batch_normalization_30[0][0]
__________________________________________________________________________________________________
max_pooling2d_3 (MaxPooling2D) (None, None, None, 2 0 mixed2[0][0]
__________________________________________________________________________________________________
mixed3 (Concatenate) (None, None, None, 7 0 activation_27[0][0]
activation_30[0][0]
max_pooling2d_3[0][0]
__________________________________________________________________________________________________
conv2d_35 (Conv2D) (None, None, None, 1 98304 mixed3[0][0]
__________________________________________________________________________________________________
batch_normalization_35 (BatchNo (None, None, None, 1 384 conv2d_35[0][0]
__________________________________________________________________________________________________
activation_35 (Activation) (None, None, None, 1 0 batch_normalization_35[0][0]
__________________________________________________________________________________________________
conv2d_36 (Conv2D) (None, None, None, 1 114688 activation_35[0][0]
__________________________________________________________________________________________________
batch_normalization_36 (BatchNo (None, None, None, 1 384 conv2d_36[0][0]
__________________________________________________________________________________________________
activation_36 (Activation) (None, None, None, 1 0 batch_normalization_36[0][0]
__________________________________________________________________________________________________
conv2d_32 (Conv2D) (None, None, None, 1 98304 mixed3[0][0]
__________________________________________________________________________________________________
conv2d_37 (Conv2D) (None, None, None, 1 114688 activation_36[0][0]
__________________________________________________________________________________________________
batch_normalization_32 (BatchNo (None, None, None, 1 384 conv2d_32[0][0]
__________________________________________________________________________________________________
batch_normalization_37 (BatchNo (None, None, None, 1 384 conv2d_37[0][0]
__________________________________________________________________________________________________
activation_32 (Activation) (None, None, None, 1 0 batch_normalization_32[0][0]
__________________________________________________________________________________________________
activation_37 (Activation) (None, None, None, 1 0 batch_normalization_37[0][0]
__________________________________________________________________________________________________
conv2d_33 (Conv2D) (None, None, None, 1 114688 activation_32[0][0]
__________________________________________________________________________________________________
conv2d_38 (Conv2D) (None, None, None, 1 114688 activation_37[0][0]
__________________________________________________________________________________________________
batch_normalization_33 (BatchNo (None, None, None, 1 384 conv2d_33[0][0]
__________________________________________________________________________________________________
batch_normalization_38 (BatchNo (None, None, None, 1 384 conv2d_38[0][0]
__________________________________________________________________________________________________
activation_33 (Activation) (None, None, None, 1 0 batch_normalization_33[0][0]
__________________________________________________________________________________________________
activation_38 (Activation) (None, None, None, 1 0 batch_normalization_38[0][0]
__________________________________________________________________________________________________
average_pooling2d_4 (AveragePoo (None, None, None, 7 0 mixed3[0][0]
__________________________________________________________________________________________________
conv2d_31 (Conv2D) (None, None, None, 1 147456 mixed3[0][0]
__________________________________________________________________________________________________
conv2d_34 (Conv2D) (None, None, None, 1 172032 activation_33[0][0]
__________________________________________________________________________________________________
conv2d_39 (Conv2D) (None, None, None, 1 172032 activation_38[0][0]
__________________________________________________________________________________________________
conv2d_40 (Conv2D) (None, None, None, 1 147456 average_pooling2d_4[0][0]
__________________________________________________________________________________________________
batch_normalization_31 (BatchNo (None, None, None, 1 576 conv2d_31[0][0]
__________________________________________________________________________________________________
batch_normalization_34 (BatchNo (None, None, None, 1 576 conv2d_34[0][0]
__________________________________________________________________________________________________
batch_normalization_39 (BatchNo (None, None, None, 1 576 conv2d_39[0][0]
__________________________________________________________________________________________________
batch_normalization_40 (BatchNo (None, None, None, 1 576 conv2d_40[0][0]
__________________________________________________________________________________________________
activation_31 (Activation) (None, None, None, 1 0 batch_normalization_31[0][0]
__________________________________________________________________________________________________
activation_34 (Activation) (None, None, None, 1 0 batch_normalization_34[0][0]
__________________________________________________________________________________________________
activation_39 (Activation) (None, None, None, 1 0 batch_normalization_39[0][0]
__________________________________________________________________________________________________
activation_40 (Activation) (None, None, None, 1 0 batch_normalization_40[0][0]
__________________________________________________________________________________________________
mixed4 (Concatenate) (None, None, None, 7 0 activation_31[0][0]
activation_34[0][0]
activation_39[0][0]
activation_40[0][0]
__________________________________________________________________________________________________
conv2d_45 (Conv2D) (None, None, None, 1 122880 mixed4[0][0]
__________________________________________________________________________________________________
batch_normalization_45 (BatchNo (None, None, None, 1 480 conv2d_45[0][0]
__________________________________________________________________________________________________
activation_45 (Activation) (None, None, None, 1 0 batch_normalization_45[0][0]
__________________________________________________________________________________________________
conv2d_46 (Conv2D) (None, None, None, 1 179200 activation_45[0][0]
__________________________________________________________________________________________________
batch_normalization_46 (BatchNo (None, None, None, 1 480 conv2d_46[0][0]
__________________________________________________________________________________________________
activation_46 (Activation) (None, None, None, 1 0 batch_normalization_46[0][0]
__________________________________________________________________________________________________
conv2d_42 (Conv2D) (None, None, None, 1 122880 mixed4[0][0]
__________________________________________________________________________________________________
conv2d_47 (Conv2D) (None, None, None, 1 179200 activation_46[0][0]
__________________________________________________________________________________________________
batch_normalization_42 (BatchNo (None, None, None, 1 480 conv2d_42[0][0]
__________________________________________________________________________________________________
batch_normalization_47 (BatchNo (None, None, None, 1 480 conv2d_47[0][0]
__________________________________________________________________________________________________
activation_42 (Activation) (None, None, None, 1 0 batch_normalization_42[0][0]
__________________________________________________________________________________________________
activation_47 (Activation) (None, None, None, 1 0 batch_normalization_47[0][0]
__________________________________________________________________________________________________
conv2d_43 (Conv2D) (None, None, None, 1 179200 activation_42[0][0]
__________________________________________________________________________________________________
conv2d_48 (Conv2D) (None, None, None, 1 179200 activation_47[0][0]
__________________________________________________________________________________________________
batch_normalization_43 (BatchNo (None, None, None, 1 480 conv2d_43[0][0]
__________________________________________________________________________________________________
batch_normalization_48 (BatchNo (None, None, None, 1 480 conv2d_48[0][0]
__________________________________________________________________________________________________
activation_43 (Activation) (None, None, None, 1 0 batch_normalization_43[0][0]
__________________________________________________________________________________________________
activation_48 (Activation) (None, None, None, 1 0 batch_normalization_48[0][0]
__________________________________________________________________________________________________
average_pooling2d_5 (AveragePoo (None, None, None, 7 0 mixed4[0][0]
__________________________________________________________________________________________________
conv2d_41 (Conv2D) (None, None, None, 1 147456 mixed4[0][0]
__________________________________________________________________________________________________
conv2d_44 (Conv2D) (None, None, None, 1 215040 activation_43[0][0]
__________________________________________________________________________________________________
conv2d_49 (Conv2D) (None, None, None, 1 215040 activation_48[0][0]
__________________________________________________________________________________________________
conv2d_50 (Conv2D) (None, None, None, 1 147456 average_pooling2d_5[0][0]
__________________________________________________________________________________________________
batch_normalization_41 (BatchNo (None, None, None, 1 576 conv2d_41[0][0]
__________________________________________________________________________________________________
batch_normalization_44 (BatchNo (None, None, None, 1 576 conv2d_44[0][0]
__________________________________________________________________________________________________
batch_normalization_49 (BatchNo (None, None, None, 1 576 conv2d_49[0][0]
__________________________________________________________________________________________________
batch_normalization_50 (BatchNo (None, None, None, 1 576 conv2d_50[0][0]
__________________________________________________________________________________________________
activation_41 (Activation) (None, None, None, 1 0 batch_normalization_41[0][0]
__________________________________________________________________________________________________
activation_44 (Activation) (None, None, None, 1 0 batch_normalization_44[0][0]
__________________________________________________________________________________________________
activation_49 (Activation) (None, None, None, 1 0 batch_normalization_49[0][0]
__________________________________________________________________________________________________
activation_50 (Activation) (None, None, None, 1 0 batch_normalization_50[0][0]
__________________________________________________________________________________________________
mixed5 (Concatenate) (None, None, None, 7 0 activation_41[0][0]
activation_44[0][0]
activation_49[0][0]
activation_50[0][0]
__________________________________________________________________________________________________
conv2d_55 (Conv2D) (None, None, None, 1 122880 mixed5[0][0]
__________________________________________________________________________________________________
batch_normalization_55 (BatchNo (None, None, None, 1 480 conv2d_55[0][0]
__________________________________________________________________________________________________
activation_55 (Activation) (None, None, None, 1 0 batch_normalization_55[0][0]
__________________________________________________________________________________________________
conv2d_56 (Conv2D) (None, None, None, 1 179200 activation_55[0][0]
__________________________________________________________________________________________________
batch_normalization_56 (BatchNo (None, None, None, 1 480 conv2d_56[0][0]
__________________________________________________________________________________________________
activation_56 (Activation) (None, None, None, 1 0 batch_normalization_56[0][0]
__________________________________________________________________________________________________
conv2d_52 (Conv2D) (None, None, None, 1 122880 mixed5[0][0]
__________________________________________________________________________________________________
conv2d_57 (Conv2D) (None, None, None, 1 179200 activation_56[0][0]
__________________________________________________________________________________________________
batch_normalization_52 (BatchNo (None, None, None, 1 480 conv2d_52[0][0]
__________________________________________________________________________________________________
batch_normalization_57 (BatchNo (None, None, None, 1 480 conv2d_57[0][0]
__________________________________________________________________________________________________
activation_52 (Activation) (None, None, None, 1 0 batch_normalization_52[0][0]
__________________________________________________________________________________________________
activation_57 (Activation) (None, None, None, 1 0 batch_normalization_57[0][0]
__________________________________________________________________________________________________
conv2d_53 (Conv2D) (None, None, None, 1 179200 activation_52[0][0]
__________________________________________________________________________________________________
conv2d_58 (Conv2D) (None, None, None, 1 179200 activation_57[0][0]
__________________________________________________________________________________________________
batch_normalization_53 (BatchNo (None, None, None, 1 480 conv2d_53[0][0]
__________________________________________________________________________________________________
batch_normalization_58 (BatchNo (None, None, None, 1 480 conv2d_58[0][0]
__________________________________________________________________________________________________
activation_53 (Activation) (None, None, None, 1 0 batch_normalization_53[0][0]
__________________________________________________________________________________________________
activation_58 (Activation) (None, None, None, 1 0 batch_normalization_58[0][0]
__________________________________________________________________________________________________
average_pooling2d_6 (AveragePoo (None, None, None, 7 0 mixed5[0][0]
__________________________________________________________________________________________________
conv2d_51 (Conv2D) (None, None, None, 1 147456 mixed5[0][0]
__________________________________________________________________________________________________
conv2d_54 (Conv2D) (None, None, None, 1 215040 activation_53[0][0]
__________________________________________________________________________________________________
conv2d_59 (Conv2D) (None, None, None, 1 215040 activation_58[0][0]
__________________________________________________________________________________________________
conv2d_60 (Conv2D) (None, None, None, 1 147456 average_pooling2d_6[0][0]
__________________________________________________________________________________________________
batch_normalization_51 (BatchNo (None, None, None, 1 576 conv2d_51[0][0]
__________________________________________________________________________________________________
batch_normalization_54 (BatchNo (None, None, None, 1 576 conv2d_54[0][0]
__________________________________________________________________________________________________
batch_normalization_59 (BatchNo (None, None, None, 1 576 conv2d_59[0][0]
__________________________________________________________________________________________________
batch_normalization_60 (BatchNo (None, None, None, 1 576 conv2d_60[0][0]
__________________________________________________________________________________________________
activation_51 (Activation) (None, None, None, 1 0 batch_normalization_51[0][0]
__________________________________________________________________________________________________
activation_54 (Activation) (None, None, None, 1 0 batch_normalization_54[0][0]
__________________________________________________________________________________________________
activation_59 (Activation) (None, None, None, 1 0 batch_normalization_59[0][0]
__________________________________________________________________________________________________
activation_60 (Activation) (None, None, None, 1 0 batch_normalization_60[0][0]
__________________________________________________________________________________________________
mixed6 (Concatenate) (None, None, None, 7 0 activation_51[0][0]
activation_54[0][0]
activation_59[0][0]
activation_60[0][0]
__________________________________________________________________________________________________
conv2d_65 (Conv2D) (None, None, None, 1 147456 mixed6[0][0]
__________________________________________________________________________________________________
batch_normalization_65 (BatchNo (None, None, None, 1 576 conv2d_65[0][0]
__________________________________________________________________________________________________
activation_65 (Activation) (None, None, None, 1 0 batch_normalization_65[0][0]
__________________________________________________________________________________________________
conv2d_66 (Conv2D) (None, None, None, 1 258048 activation_65[0][0]
__________________________________________________________________________________________________
batch_normalization_66 (BatchNo (None, None, None, 1 576 conv2d_66[0][0]
__________________________________________________________________________________________________
activation_66 (Activation) (None, None, None, 1 0 batch_normalization_66[0][0]
__________________________________________________________________________________________________
conv2d_62 (Conv2D) (None, None, None, 1 147456 mixed6[0][0]
__________________________________________________________________________________________________
conv2d_67 (Conv2D) (None, None, None, 1 258048 activation_66[0][0]
__________________________________________________________________________________________________
batch_normalization_62 (BatchNo (None, None, None, 1 576 conv2d_62[0][0]
__________________________________________________________________________________________________
batch_normalization_67 (BatchNo (None, None, None, 1 576 conv2d_67[0][0]
__________________________________________________________________________________________________
activation_62 (Activation) (None, None, None, 1 0 batch_normalization_62[0][0]
__________________________________________________________________________________________________
activation_67 (Activation) (None, None, None, 1 0 batch_normalization_67[0][0]
__________________________________________________________________________________________________
conv2d_63 (Conv2D) (None, None, None, 1 258048 activation_62[0][0]
__________________________________________________________________________________________________
conv2d_68 (Conv2D) (None, None, None, 1 258048 activation_67[0][0]
__________________________________________________________________________________________________
batch_normalization_63 (BatchNo (None, None, None, 1 576 conv2d_63[0][0]
__________________________________________________________________________________________________
batch_normalization_68 (BatchNo (None, None, None, 1 576 conv2d_68[0][0]
__________________________________________________________________________________________________
activation_63 (Activation) (None, None, None, 1 0 batch_normalization_63[0][0]
__________________________________________________________________________________________________
activation_68 (Activation) (None, None, None, 1 0 batch_normalization_68[0][0]
__________________________________________________________________________________________________
average_pooling2d_7 (AveragePoo (None, None, None, 7 0 mixed6[0][0]
__________________________________________________________________________________________________
conv2d_61 (Conv2D) (None, None, None, 1 147456 mixed6[0][0]
__________________________________________________________________________________________________
conv2d_64 (Conv2D) (None, None, None, 1 258048 activation_63[0][0]
__________________________________________________________________________________________________
conv2d_69 (Conv2D) (None, None, None, 1 258048 activation_68[0][0]
__________________________________________________________________________________________________
conv2d_70 (Conv2D) (None, None, None, 1 147456 average_pooling2d_7[0][0]
__________________________________________________________________________________________________
batch_normalization_61 (BatchNo (None, None, None, 1 576 conv2d_61[0][0]
__________________________________________________________________________________________________
batch_normalization_64 (BatchNo (None, None, None, 1 576 conv2d_64[0][0]
__________________________________________________________________________________________________
batch_normalization_69 (BatchNo (None, None, None, 1 576 conv2d_69[0][0]
__________________________________________________________________________________________________
batch_normalization_70 (BatchNo (None, None, None, 1 576 conv2d_70[0][0]
__________________________________________________________________________________________________
activation_61 (Activation) (None, None, None, 1 0 batch_normalization_61[0][0]
__________________________________________________________________________________________________
activation_64 (Activation) (None, None, None, 1 0 batch_normalization_64[0][0]
__________________________________________________________________________________________________
activation_69 (Activation) (None, None, None, 1 0 batch_normalization_69[0][0]
__________________________________________________________________________________________________
activation_70 (Activation) (None, None, None, 1 0 batch_normalization_70[0][0]
__________________________________________________________________________________________________
mixed7 (Concatenate) (None, None, None, 7 0 activation_61[0][0]
activation_64[0][0]
activation_69[0][0]
activation_70[0][0]
__________________________________________________________________________________________________
conv2d_73 (Conv2D) (None, None, None, 1 147456 mixed7[0][0]
__________________________________________________________________________________________________
batch_normalization_73 (BatchNo (None, None, None, 1 576 conv2d_73[0][0]
__________________________________________________________________________________________________
activation_73 (Activation) (None, None, None, 1 0 batch_normalization_73[0][0]
__________________________________________________________________________________________________
conv2d_74 (Conv2D) (None, None, None, 1 258048 activation_73[0][0]
__________________________________________________________________________________________________
batch_normalization_74 (BatchNo (None, None, None, 1 576 conv2d_74[0][0]
__________________________________________________________________________________________________
activation_74 (Activation) (None, None, None, 1 0 batch_normalization_74[0][0]
__________________________________________________________________________________________________
conv2d_71 (Conv2D) (None, None, None, 1 147456 mixed7[0][0]
__________________________________________________________________________________________________
conv2d_75 (Conv2D) (None, None, None, 1 258048 activation_74[0][0]
__________________________________________________________________________________________________
batch_normalization_71 (BatchNo (None, None, None, 1 576 conv2d_71[0][0]
__________________________________________________________________________________________________
batch_normalization_75 (BatchNo (None, None, None, 1 576 conv2d_75[0][0]
__________________________________________________________________________________________________
activation_71 (Activation) (None, None, None, 1 0 batch_normalization_71[0][0]
__________________________________________________________________________________________________
activation_75 (Activation) (None, None, None, 1 0 batch_normalization_75[0][0]
__________________________________________________________________________________________________
conv2d_72 (Conv2D) (None, None, None, 3 552960 activation_71[0][0]
__________________________________________________________________________________________________
conv2d_76 (Conv2D) (None, None, None, 1 331776 activation_75[0][0]
__________________________________________________________________________________________________
batch_normalization_72 (BatchNo (None, None, None, 3 960 conv2d_72[0][0]
__________________________________________________________________________________________________
batch_normalization_76 (BatchNo (None, None, None, 1 576 conv2d_76[0][0]
__________________________________________________________________________________________________
activation_72 (Activation) (None, None, None, 3 0 batch_normalization_72[0][0]
__________________________________________________________________________________________________
activation_76 (Activation) (None, None, None, 1 0 batch_normalization_76[0][0]
__________________________________________________________________________________________________
max_pooling2d_4 (MaxPooling2D) (None, None, None, 7 0 mixed7[0][0]
__________________________________________________________________________________________________
mixed8 (Concatenate) (None, None, None, 1 0 activation_72[0][0]
activation_76[0][0]
max_pooling2d_4[0][0]
__________________________________________________________________________________________________
conv2d_81 (Conv2D) (None, None, None, 4 573440 mixed8[0][0]
__________________________________________________________________________________________________
batch_normalization_81 (BatchNo (None, None, None, 4 1344 conv2d_81[0][0]
__________________________________________________________________________________________________
activation_81 (Activation) (None, None, None, 4 0 batch_normalization_81[0][0]
__________________________________________________________________________________________________
conv2d_78 (Conv2D) (None, None, None, 3 491520 mixed8[0][0]
__________________________________________________________________________________________________
conv2d_82 (Conv2D) (None, None, None, 3 1548288 activation_81[0][0]
__________________________________________________________________________________________________
batch_normalization_78 (BatchNo (None, None, None, 3 1152 conv2d_78[0][0]
__________________________________________________________________________________________________
batch_normalization_82 (BatchNo (None, None, None, 3 1152 conv2d_82[0][0]
__________________________________________________________________________________________________
activation_78 (Activation) (None, None, None, 3 0 batch_normalization_78[0][0]
__________________________________________________________________________________________________
activation_82 (Activation) (None, None, None, 3 0 batch_normalization_82[0][0]
__________________________________________________________________________________________________
conv2d_79 (Conv2D) (None, None, None, 3 442368 activation_78[0][0]
__________________________________________________________________________________________________
conv2d_80 (Conv2D) (None, None, None, 3 442368 activation_78[0][0]
__________________________________________________________________________________________________
conv2d_83 (Conv2D) (None, None, None, 3 442368 activation_82[0][0]
__________________________________________________________________________________________________
conv2d_84 (Conv2D) (None, None, None, 3 442368 activation_82[0][0]
__________________________________________________________________________________________________
average_pooling2d_8 (AveragePoo (None, None, None, 1 0 mixed8[0][0]
__________________________________________________________________________________________________
conv2d_77 (Conv2D) (None, None, None, 3 409600 mixed8[0][0]
__________________________________________________________________________________________________
batch_normalization_79 (BatchNo (None, None, None, 3 1152 conv2d_79[0][0]
__________________________________________________________________________________________________
batch_normalization_80 (BatchNo (None, None, None, 3 1152 conv2d_80[0][0]
__________________________________________________________________________________________________
batch_normalization_83 (BatchNo (None, None, None, 3 1152 conv2d_83[0][0]
__________________________________________________________________________________________________
batch_normalization_84 (BatchNo (None, None, None, 3 1152 conv2d_84[0][0]
__________________________________________________________________________________________________
conv2d_85 (Conv2D) (None, None, None, 1 245760 average_pooling2d_8[0][0]
__________________________________________________________________________________________________
batch_normalization_77 (BatchNo (None, None, None, 3 960 conv2d_77[0][0]
__________________________________________________________________________________________________
activation_79 (Activation) (None, None, None, 3 0 batch_normalization_79[0][0]
__________________________________________________________________________________________________
activation_80 (Activation) (None, None, None, 3 0 batch_normalization_80[0][0]
__________________________________________________________________________________________________
activation_83 (Activation) (None, None, None, 3 0 batch_normalization_83[0][0]
__________________________________________________________________________________________________
activation_84 (Activation) (None, None, None, 3 0 batch_normalization_84[0][0]
__________________________________________________________________________________________________
batch_normalization_85 (BatchNo (None, None, None, 1 576 conv2d_85[0][0]
__________________________________________________________________________________________________
activation_77 (Activation) (None, None, None, 3 0 batch_normalization_77[0][0]
__________________________________________________________________________________________________
mixed9_0 (Concatenate) (None, None, None, 7 0 activation_79[0][0]
activation_80[0][0]
__________________________________________________________________________________________________
concatenate_1 (Concatenate) (None, None, None, 7 0 activation_83[0][0]
activation_84[0][0]
__________________________________________________________________________________________________
activation_85 (Activation) (None, None, None, 1 0 batch_normalization_85[0][0]
__________________________________________________________________________________________________
mixed9 (Concatenate) (None, None, None, 2 0 activation_77[0][0]
mixed9_0[0][0]
concatenate_1[0][0]
activation_85[0][0]
__________________________________________________________________________________________________
conv2d_90 (Conv2D) (None, None, None, 4 917504 mixed9[0][0]
__________________________________________________________________________________________________
batch_normalization_90 (BatchNo (None, None, None, 4 1344 conv2d_90[0][0]
__________________________________________________________________________________________________
activation_90 (Activation) (None, None, None, 4 0 batch_normalization_90[0][0]
__________________________________________________________________________________________________
conv2d_87 (Conv2D) (None, None, None, 3 786432 mixed9[0][0]
__________________________________________________________________________________________________
conv2d_91 (Conv2D) (None, None, None, 3 1548288 activation_90[0][0]
__________________________________________________________________________________________________
batch_normalization_87 (BatchNo (None, None, None, 3 1152 conv2d_87[0][0]
__________________________________________________________________________________________________
batch_normalization_91 (BatchNo (None, None, None, 3 1152 conv2d_91[0][0]
__________________________________________________________________________________________________
activation_87 (Activation) (None, None, None, 3 0 batch_normalization_87[0][0]
__________________________________________________________________________________________________
activation_91 (Activation) (None, None, None, 3 0 batch_normalization_91[0][0]
__________________________________________________________________________________________________
conv2d_88 (Conv2D) (None, None, None, 3 442368 activation_87[0][0]
__________________________________________________________________________________________________
conv2d_89 (Conv2D) (None, None, None, 3 442368 activation_87[0][0]
__________________________________________________________________________________________________
conv2d_92 (Conv2D) (None, None, None, 3 442368 activation_91[0][0]
__________________________________________________________________________________________________
conv2d_93 (Conv2D) (None, None, None, 3 442368 activation_91[0][0]
__________________________________________________________________________________________________
average_pooling2d_9 (AveragePoo (None, None, None, 2 0 mixed9[0][0]
__________________________________________________________________________________________________
conv2d_86 (Conv2D) (None, None, None, 3 655360 mixed9[0][0]
__________________________________________________________________________________________________
batch_normalization_88 (BatchNo (None, None, None, 3 1152 conv2d_88[0][0]
__________________________________________________________________________________________________
batch_normalization_89 (BatchNo (None, None, None, 3 1152 conv2d_89[0][0]
__________________________________________________________________________________________________
batch_normalization_92 (BatchNo (None, None, None, 3 1152 conv2d_92[0][0]
__________________________________________________________________________________________________
batch_normalization_93 (BatchNo (None, None, None, 3 1152 conv2d_93[0][0]
__________________________________________________________________________________________________
conv2d_94 (Conv2D) (None, None, None, 1 393216 average_pooling2d_9[0][0]
__________________________________________________________________________________________________
batch_normalization_86 (BatchNo (None, None, None, 3 960 conv2d_86[0][0]
__________________________________________________________________________________________________
activation_88 (Activation) (None, None, None, 3 0 batch_normalization_88[0][0]
__________________________________________________________________________________________________
activation_89 (Activation) (None, None, None, 3 0 batch_normalization_89[0][0]
__________________________________________________________________________________________________
activation_92 (Activation) (None, None, None, 3 0 batch_normalization_92[0][0]
__________________________________________________________________________________________________
activation_93 (Activation) (None, None, None, 3 0 batch_normalization_93[0][0]
__________________________________________________________________________________________________
batch_normalization_94 (BatchNo (None, None, None, 1 576 conv2d_94[0][0]
__________________________________________________________________________________________________
activation_86 (Activation) (None, None, None, 3 0 batch_normalization_86[0][0]
__________________________________________________________________________________________________
mixed9_1 (Concatenate) (None, None, None, 7 0 activation_88[0][0]
activation_89[0][0]
__________________________________________________________________________________________________
concatenate_2 (Concatenate) (None, None, None, 7 0 activation_92[0][0]
activation_93[0][0]
__________________________________________________________________________________________________
activation_94 (Activation) (None, None, None, 1 0 batch_normalization_94[0][0]
__________________________________________________________________________________________________
mixed10 (Concatenate) (None, None, None, 2 0 activation_86[0][0]
mixed9_1[0][0]
concatenate_2[0][0]
activation_94[0][0]
==================================================================================================
Total params: 21,802,784
Trainable params: 21,768,352
Non-trainable params: 34,432
__________________________________________________________________________________________________
这是将input
输入模型后得到的`shape``
>print (K.int_shape(output))
>>>(None, 8, 8, 2048)
>print (K.int_shape(x))
>>>(None, 1, 1, 2048)
>print (K.int_shape(f))
>>>(None, 2064)
下面的model
是论文中所提出的架构
model = Model(inputs=[input,input_gender], outputs=predictions)
for i,layer in enumerate(model.layers):
print (i,layer.name)
print(model.summary())
Adam=keras.optimizers.Adam(lr=0.0003,beta_1=0.9,beta_2=0.999)
model.compile(optimizer=Adam, loss='mean_absolute_error', metrics=['MAE'])
Model: "model_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input1 (InputLayer) (None, 300, 300, 3) 0
_________________________________________________________________
inception_v3 (Model) multiple 21802784
_________________________________________________________________
max_pooling2d_5 (MaxPooling2 (None, 1, 1, 2048) 0
_________________________________________________________________
flatten_1 (Flatten) (None, 2048) 0
_________________________________________________________________
dense_2 (Dense) (None, 240) 491760
=================================================================
Total params: 22,294,544
Trainable params: 22,260,112
Non-trainable params: 34,432
_________________________________________________________________
None
4.存储每个epoch的权重
然后存储每个epoch
的权重,还是设备不支持。。。将epoch
改成2了,就意思一下。
keras.callbacks.ModelCheckpoint()
model.fit()
# Save weights after every epoch
checkpoint =keras.callbacks.ModelCheckpoint(filepath='weights/weights.{epoch:02d}-{val_loss:.2f}.hdf5',save_weights_only=True,period=30)#每个纪元后保存模型
history=model.fit([x_train,gender_train],y_train,batch_size=batch_size,epochs=2,verbose=1,validation_data=([x_valid,gender_valid],y_valid), callbacks = [checkpoint])
score = model.evaluate([x_test,gender_test], y_test, batch_size=batch_size)#返回的是 损失值和你选定的指标值
print('Test loss:', score[0])
print('Test MAE:', score[1])
输出如下
Train on 4 samples, validate on 2 samples
Epoch 1/2
4/4 [==============================] - 55s 14s/step - loss: 2.5319 - MAE: 2.5319 - val_loss: 2.0769 - val_MAE: 2.0769
Epoch 2/2
4/4 [==============================] - 6s 1s/step - loss: 1.6773 - MAE: 1.6773 - val_loss: 1.7828 - val_MAE: 1.7828
2/2 [==============================] - 1s 311ms/step
Test loss: 1.9737377166748047
Test MAE: 1.9737377166748047
boneage-training-dataset/9294.png
(8, 8, 2048)
193
(8, 8)
boneage-training-dataset/9295.png
(8, 8, 2048)
211
(8, 8)
boneage-training-dataset/9296.png
(8, 8, 2048)
131
(8, 8)
boneage-training-dataset/9297.png
(8, 8, 2048)
131
(8, 8)
boneage-training-dataset/9300.png
(8, 8, 2048)
131
(8, 8)
boneage-training-dataset/9301.png
(8, 8, 2048)
211
(8, 8)
boneage-training-dataset/9302.png
(8, 8, 2048)
193
(8, 8)
boneage-training-dataset/9303.png
(8, 8, 2048)
211
(8, 8)
********** Done ***********
5.生成注意力图
GAPAttention(model,weights,'boneage-training-dataset/')
def GAPAttention(model,weights,image_path):
file_list = os.listdir(image_path)
file_list.sort()#排序
for filename in file_list:
filepath=image_path+filename
#print (filepath)#例如boneage-training-dataset/9295.png
image=load_image(filepath)#加载图像
#print(image)
image = image/255.0#归一化
#print(image)
gender=1.0
gender=np.asarray(gender)
gender=np.expand_dims(gender,axis=0)#该功能是改变数组维度
#print(gender)
layer=K.function([model.layers[0].input],[model.layers[1].get_output_at(-1),model.layers[-1].output])#打印中间结果
GAP,prediction=layer([image,gender])
GAP=np.squeeze(GAP,axis=0)#从数组的形状中删除单维度条目
#print (GAP.shape)#(8, 8, 2048)
index = np.argmax(prediction)#返回最大索引数
#print (index)
# weight = weights[:,index]
weight =np.mean(weights[:,index-5:index+5],axis=1)
heatmap = np.zeros((GAP.shape[0],GAP.shape[1]))
for k in range(GAP.shape[2]):
heatmap = heatmap + weight[k]*GAP[:,:,k]
heatmap = heatmap/np.max(heatmap)
heatmap = np.uint8(255*heatmap)
#print (heatmap.shape)
heatmap = cv2.applyColorMap(heatmap,cv2.COLORMAP_JET)#产生伪彩色图像
SaveImg(filename,filepath,heatmap)
#print(SaveImg())
print ('********** Done ***********')
def SaveImg(filename,filepath,heatmap):
img = cv2.imread(filepath)
heatmap = cv2.resize(heatmap,(img.shape[1],img.shape[0]))
AttentionImg =0.5* heatmap + img
cv2.imwrite('heatmap/'+filename,heatmap)#保存图像
cv2.imwrite('AttentionImg/'+filename,AttentionImg)#保存图像
我的heatmap和AttentionImg,花里胡哨的就不放出来丢脸了,应该是前面epoch训练的太少了,model和weight都没训练好,就用了。原作者的GitHub里有,要看可以取瞅瞅。
总结
这个代码主要就是预训练模型获得迁移学习的权重,以及生成heatmap和AttentionImg