任务说明
- 任务主题:论文作者统计,统计所有论文作者出现评率Top10的姓名;
- 任务内容:论文作者的统计、使用 Pandas 读取数据并使用字符串操作;
- 任务成果:学习 Pandas 的字符串操作;
数据处理步骤
在原始arxiv数据集中论文作者authors
字段是一个字符串格式,其中每个作者使用逗号进行分隔分,所以我们我们首先需要完成以下步骤:
- 使用逗号对作者进行切分;
- 剔除单个作者中非常规的字符;
具体操作可以参考以下例子:
C. Bal\\'azs, E. L. Berger, P. M. Nadolsky, C.-P. Yuan
# 切分为,其中\\为转义符
C. Ba'lazs
E. L. Berger
P. M. Nadolsky
C.-P. Yuan
当然在原始数据集中authors_parsed
字段已经帮我们处理好了作者信息,可以直接使用该字段完成后续统计。
字符串处理
在Python中字符串是最常用的数据类型,可以使用引号('或")来创建字符串。Python中所有的字符都使用字符串存储,可以使用方括号来截取字符串,如下实例:
var1 = 'Hello Datawhale!'
var2 = "Python Everwhere!"
# 切片处理字符串
print("var1[-10:]: ", var1[-10:])
print("var2[1:5]: ", var2[0:7])
var1[-10:]: Datawhale!
var2[1:5]: Python
同时在Python中还支持转义符:
(在行尾时) | 续行符 |
---|---|
\ | 反斜杠符号 |
’ | 单引号 |
" | 双引号 |
\n | 换行 |
\t | 横向制表符 |
\r | 回车 |
Python中还内置了很多内置函数,非常方便使用:
方法 | 描述 |
---|---|
string.capitalize() | 把字符串的第一个字符大写 |
string.isalpha() | 如果 string 至少有一个字符并且所有字符都是字母则返回 True,否则返回 False |
string.title() | 返回"标题化"的 string,就是说所有单词都是以大写开始,其余字母均为小写(见 istitle()) |
string.upper() | 转换 string 中的小写字母为大写 |
具体代码实现以及讲解
# 导入所需的包
# 如果碰到seaborn导包出错,可以先试试pip uninstall seaborn ,然后再pip install seaborn
# 如果提示不能卸载,那就强制性升级python -m pip install --upgrade seaborn
# 如果提示拒绝访问 就python -m pip install --user --upgrade seaborn
import seaborn as sns #用于画图
from bs4 import BeautifulSoup #用于爬取arxiv的数据
import re #用于正则表达式,匹配字符串的模式
import requests #用于网络连接,发送网络请求,使用域名获取对应信息
import json #读取数据,我们的数据为json格式的
import pandas as pd #数据处理,数据分析
import matplotlib.pyplot as plt #画图工具
'''
定义读取文件的函数
path: 文件路径
columns: 需要选择的列
count: 读取行数
'''
def readArxivFile(path, columns=['id', 'submitter', 'authors', 'title', 'comments', 'journal-ref', 'doi',
'report-no', 'categories', 'license', 'abstract', 'versions',
'update_date', 'authors_parsed'], count=None):
data = []
with open(path, 'r') as f:
for idx, line in enumerate(f):
# enumerate(sequence, [start=0]) 枚举函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列
if idx == count:
break
d = json.loads(line)
d = {col : d[col] for col in columns}
data.append(d)
data = pd.DataFrame(data)
return data
data = readArxivFile('arxiv-metadata-oai-snapshot.json',
['id', 'authors', 'categories', 'authors_parsed'],
100000)
data.head()# 查看数据样子,取前五
id | authors | categories | authors_parsed | |
---|---|---|---|---|
0 | 0704.0001 | C. Bal\'azs, E. L. Berger, P. M. Nadolsky, C.-... | hep-ph | [[Balázs, C., ], [Berger, E. L., ], [Nadolsky,... |
1 | 0704.0002 | Ileana Streinu and Louis Theran | math.CO cs.CG | [[Streinu, Ileana, ], [Theran, Louis, ]] |
2 | 0704.0003 | Hongjun Pan | physics.gen-ph | [[Pan, Hongjun, ]] |
3 | 0704.0004 | David Callan | math.CO | [[Callan, David, ]] |
4 | 0704.0005 | Wael Abu-Shammala and Alberto Torchinsky | math.CA math.FA | [[Abu-Shammala, Wael, ], [Torchinsky, Alberto, ]] |
数据统计
接下来我们将完成以下统计操作:
- 统计所有作者姓名出现频率的Top10;
- 统计所有作者姓(姓名最后一个单词)的出现频率的Top10;
- 统计所有作者姓第一个字符的评率;
为了节约计算时间,下面选择cs.CV
类别下的论文进行处理:
# 选择类别为cs.CV的论文
data1 = data[data['categories'].apply(lambda x: 'cs.CV' in x)]
data1.head()
id | authors | categories | authors_parsed | |
---|---|---|---|---|
1266 | 0704.1267 | Laurence Likforman-Sulem, Abderrazak Zahour, B... | cs.CV | [[Likforman-Sulem, Laurence, ], [Zahour, Abder... |
3634 | 0704.3635 | Fulufhelo Vincent Nelwamondo and Tshilidzi Mar... | cs.CV cs.IR | [[Nelwamondo, Fulufhelo Vincent, ], [Marwala, ... |
4201 | 0705.0199 | Erik Berglund, Joaquin Sitte | cs.NE cs.AI cs.CV | [[Berglund, Erik, ], [Sitte, Joaquin, ]] |
4216 | 0705.0214 | Mourad Zerai, Maher Moakher | cs.CV | [[Zerai, Mourad, ], [Moakher, Maher, ]] |
4451 | 0705.0449 | Pierre-Fran\c{c}ois Marteau (VALORIA), Gilbas ... | cs.CV | [[Marteau, Pierre-François, , VALORIA], [Ménie... |
# 拼接所有作者
all_authors = sum(data1['authors_parsed'], [])
此处的sum
的另一种操作方法,实现了列表拉平。第一个参数是被迭代的元素,第二个元素是初始值,工作机制与函数式编程的reduce
思想一样,用一个初始值不停地迭代操作目标的每个元素累加到初始对象中。
# 上述操作相当于做了以下操作
result =[]
for i in data1['authors_parsed']:
result += i
result
[['Likforman-Sulem', 'Laurence', ''],
['Marteau', 'Pierre-François', '', 'VALORIA'],
['Ménier', 'Gilbas', '', 'VALORIA'],
['Spiller', 'Jonathan M.', ''],
['Marwala', 'T.', ''],
['Falk', 'D. L.', ''],
['Rubin', 'D. M.', '']]
处理完成后all_authors
变成了所有一个list,其中每个元素为一个作者的姓名。我们首先来完成姓名频率的统计。
%matplotlib inline # 这个语句是将图片展示在notebook 里面
# 拼接所有的作者
authors_names = [' '.join(x) for x in all_authors]
authors_names = pd.DataFrame(authors_names)
# 根据作者频率绘制直方图
plt.figure(figsize=(10, 6))
authors_names[0].value_counts().head(10).plot(kind='barh')
# 修改图配置
names = authors_names[0].value_counts().index.values[:10]
_ = plt.yticks(range(0, len(names)), names)
plt.ylabel('Author')
plt.xlabel('Count')
接下来统计姓名姓,也就是authors_parsed
字段中作者第一个单词:
authors_lastnames = [x[0] for x in all_authors]
authors_lastnames = pd.DataFrame(authors_lastnames)
plt.figure(figsize=(10, 6))
authors_lastnames[0].value_counts().head(10).plot(kind='barh')
names = authors_lastnames[0].value_counts().index.values[:10]
_ = plt.yticks(range(0, len(names)), names)
plt.ylabel('Author')
plt.xlabel('Count')
绘制得到的结果,从结果看出这些都是华人或者中国姓氏~
统计所有作者姓第一个字符的评率,这个流程与上述的类似,同学们可以自行尝试。