第二节:论文作者统计-学习笔记

任务说明

  • 任务主题:论文作者统计,统计所有论文作者出现评率Top10的姓名;
  • 任务内容:论文作者的统计、使用 Pandas 读取数据并使用字符串操作;
  • 任务成果:学习 Pandas 的字符串操作;

数据处理步骤

在原始arxiv数据集中论文作者authors字段是一个字符串格式,其中每个作者使用逗号进行分隔分,所以我们我们首先需要完成以下步骤:

  • 使用逗号对作者进行切分;
  • 剔除单个作者中非常规的字符;

具体操作可以参考以下例子:

C. Bal\\'azs, E. L. Berger, P. M. Nadolsky, C.-P. Yuan

# 切分为,其中\\为转义符

C. Ba'lazs
E. L. Berger
P. M. Nadolsky
C.-P. Yuan

当然在原始数据集中authors_parsed字段已经帮我们处理好了作者信息,可以直接使用该字段完成后续统计。

字符串处理

在Python中字符串是最常用的数据类型,可以使用引号('或")来创建字符串。Python中所有的字符都使用字符串存储,可以使用方括号来截取字符串,如下实例:

var1 = 'Hello Datawhale!'
var2 = "Python Everwhere!"

# 切片处理字符串 
print("var1[-10:]: ", var1[-10:])
print("var2[1:5]: ", var2[0:7])
var1[-10:]:  Datawhale!
var2[1:5]:  Python 

同时在Python中还支持转义符:

(在行尾时)续行符
\反斜杠符号
单引号
"双引号
\n换行
\t横向制表符
\r回车

Python中还内置了很多内置函数,非常方便使用:

方法描述
string.capitalize()把字符串的第一个字符大写
string.isalpha()如果 string 至少有一个字符并且所有字符都是字母则返回 True,否则返回 False
string.title()返回"标题化"的 string,就是说所有单词都是以大写开始,其余字母均为小写(见 istitle())
string.upper()转换 string 中的小写字母为大写

具体代码实现以及讲解

# 导入所需的包
# 如果碰到seaborn导包出错,可以先试试pip uninstall seaborn ,然后再pip install seaborn
# 如果提示不能卸载,那就强制性升级python -m pip install --upgrade seaborn
# 如果提示拒绝访问 就python -m pip install --user --upgrade seaborn

import seaborn as sns #用于画图
from bs4 import BeautifulSoup #用于爬取arxiv的数据
import re #用于正则表达式,匹配字符串的模式
import requests #用于网络连接,发送网络请求,使用域名获取对应信息
import json #读取数据,我们的数据为json格式的
import pandas as pd #数据处理,数据分析
import matplotlib.pyplot as plt #画图工具
    '''
    定义读取文件的函数
        path: 文件路径
        columns: 需要选择的列
        count: 读取行数
    '''

def readArxivFile(path, columns=['id', 'submitter', 'authors', 'title', 'comments', 'journal-ref', 'doi',
       'report-no', 'categories', 'license', 'abstract', 'versions',
       'update_date', 'authors_parsed'], count=None):

    data  = []
    with open(path, 'r') as f: 
        for idx, line in enumerate(f): 
            # enumerate(sequence, [start=0]) 枚举函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列
            if idx == count:
                break
                
            d = json.loads(line)
            d = {col : d[col] for col in columns}
            data.append(d)

    data = pd.DataFrame(data)
    return data

data = readArxivFile('arxiv-metadata-oai-snapshot.json', 
                     ['id', 'authors', 'categories', 'authors_parsed'],
                    100000)
data.head()# 查看数据样子,取前五
idauthorscategoriesauthors_parsed
00704.0001C. Bal\'azs, E. L. Berger, P. M. Nadolsky, C.-...hep-ph[[Balázs, C., ], [Berger, E. L., ], [Nadolsky,...
10704.0002Ileana Streinu and Louis Theranmath.CO cs.CG[[Streinu, Ileana, ], [Theran, Louis, ]]
20704.0003Hongjun Panphysics.gen-ph[[Pan, Hongjun, ]]
30704.0004David Callanmath.CO[[Callan, David, ]]
40704.0005Wael Abu-Shammala and Alberto Torchinskymath.CA math.FA[[Abu-Shammala, Wael, ], [Torchinsky, Alberto, ]]

数据统计

接下来我们将完成以下统计操作:

  • 统计所有作者姓名出现频率的Top10;
  • 统计所有作者姓(姓名最后一个单词)的出现频率的Top10;
  • 统计所有作者姓第一个字符的评率;

为了节约计算时间,下面选择cs.CV类别下的论文进行处理:

# 选择类别为cs.CV的论文
data1 = data[data['categories'].apply(lambda x: 'cs.CV' in x)]
data1.head()
idauthorscategoriesauthors_parsed
12660704.1267Laurence Likforman-Sulem, Abderrazak Zahour, B...cs.CV[[Likforman-Sulem, Laurence, ], [Zahour, Abder...
36340704.3635Fulufhelo Vincent Nelwamondo and Tshilidzi Mar...cs.CV cs.IR[[Nelwamondo, Fulufhelo Vincent, ], [Marwala, ...
42010705.0199Erik Berglund, Joaquin Sittecs.NE cs.AI cs.CV[[Berglund, Erik, ], [Sitte, Joaquin, ]]
42160705.0214Mourad Zerai, Maher Moakhercs.CV[[Zerai, Mourad, ], [Moakher, Maher, ]]
44510705.0449Pierre-Fran\c{c}ois Marteau (VALORIA), Gilbas ...cs.CV[[Marteau, Pierre-François, , VALORIA], [Ménie...
# 拼接所有作者
all_authors = sum(data1['authors_parsed'], [])

此处的sum的另一种操作方法,实现了列表拉平。第一个参数是被迭代的元素,第二个元素是初始值,工作机制与函数式编程的reduce思想一样,用一个初始值不停地迭代操作目标的每个元素累加到初始对象中。

# 上述操作相当于做了以下操作
result =[]
for i in data1['authors_parsed']:
    result += i
result
[['Likforman-Sulem', 'Laurence', ''],
 ['Marteau', 'Pierre-François', '', 'VALORIA'],
 ['Ménier', 'Gilbas', '', 'VALORIA'],
 ['Spiller', 'Jonathan M.', ''],
 ['Marwala', 'T.', ''],
 ['Falk', 'D. L.', ''],
 ['Rubin', 'D. M.', '']]

处理完成后all_authors变成了所有一个list,其中每个元素为一个作者的姓名。我们首先来完成姓名频率的统计。

%matplotlib inline  # 这个语句是将图片展示在notebook 里面

# 拼接所有的作者
authors_names = [' '.join(x) for x in all_authors]
authors_names = pd.DataFrame(authors_names)

# 根据作者频率绘制直方图
plt.figure(figsize=(10, 6))
authors_names[0].value_counts().head(10).plot(kind='barh')

# 修改图配置
names = authors_names[0].value_counts().index.values[:10]
_ = plt.yticks(range(0, len(names)), names)
plt.ylabel('Author')
plt.xlabel('Count')

在这里插入图片描述

接下来统计姓名姓,也就是authors_parsed字段中作者第一个单词:

authors_lastnames = [x[0] for x in all_authors]
authors_lastnames = pd.DataFrame(authors_lastnames)

plt.figure(figsize=(10, 6))
authors_lastnames[0].value_counts().head(10).plot(kind='barh')

names = authors_lastnames[0].value_counts().index.values[:10]
_ = plt.yticks(range(0, len(names)), names)
plt.ylabel('Author')
plt.xlabel('Count')

在这里插入图片描述

绘制得到的结果,从结果看出这些都是华人或者中国姓氏~

统计所有作者姓第一个字符的评率,这个流程与上述的类似,同学们可以自行尝试。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值