17 October 2024
一项对数千百万篇论文的分析揭示了哪些领域热情地接纳了人工智能工具,以及哪些领域的接纳速度较慢。该研究通过对大量文献的统计分析,为各学科领域在人工智能应用方面的接受程度提供了量化依据。
具体而言,该分析有助于了解不同学科在整合人工智能技术方面的差异,为进一步推动人工智能在各个学科领域的深度融合与发展提供了重要参考。
一项分析发现,标题或摘要中提及特定人工智能(AI)方法的论文,比那些未引用这些技术的论文更可能成为其领域在给定年份内被引用率前5%的顶尖作品。这些论文还倾向于比不提及AI术语的研究获得更多领域外的引用。
然而,这种“引用提升”并非所有作者均等享受。分析还显示,历史上在科学领域代表性不足的研究群体,在使用AI工具进行工作时,并未获得与其同行相同的引用增长——这表明AI可能会加剧现有的不平等现象。
该项研究结果出自一项旨在量化人工智能在科学研究中的使用及其潜在益处的研究。然而,上周发表在《Nature Human Behaviour》杂志上的报告也提出了担忧。
耶鲁大学康涅狄格州纽黑文分校的科学和技术人类学家Lisa Messeri指出,科学家们可能会受到激励,仅仅将AI作为一种提高引用率的方式,而不考虑AI工具是否提升了工作的质量。她说:“我们希望确保,在我们投资AI的同时,不会因此忽视其他方法。”
该研究的合著者、伊利诺伊州埃文斯顿西北大学的计算社会科学家Dashun Wang表示,该研究还提供了亟需的量化数据,展示了AI如何改变科学研究。Wang说:“现在我们终于有了系统性的数据”,这将对于解决与科学领域AI使用相关的差异问题起到关键作用。
为了衡量科学家与人工智能的互动程度,作者们在1960年至2019年间发表的近7500万篇涵盖19个学科的论文的摘要和标题中,识别了与人工智能相关的术语,如“机器学习”和“深度神经网络”。
Wang承认,由于截止日期的限制,该研究并未捕捉到人工智能的最新发展,包括大型语言模型如ChatGPT的崛起,这些模型已经在改变一些研究者的科研方式。
根据研究,过去二十年中,19个学科领域的科学家们都增加了人工智能工具的使用(参见“人工智能使用情况上升”)。然而,使用率存在较大差异:计算机科学、数学和工程学的人工智能使用率最高,而历史学、艺术和政治科学的使用率最低。地质学、物理学、化学和生物学的使用率则介于两者之间。
为了估计人工智能对每个学科潜在益处的大小,作者们首先确定了人工智能能够执行的研究相关任务。
然后,他们通过检测1960年至2019年间关于人工智能的出版物中的特定动词-名词对,如“分析数据”和“生成图像”,来跟踪这些能力随时间的变化。通过观察人工智能相关出版物中的这些术语与给定研究领域基本任务的重叠程度随时间的变化,研究人员能够评估人工智能的能力是否能够满足该领域不断变化的需求。
再次强调,计算机科学、数学和工程学领域与人工智能的潜在益处最高相关,而历史学、艺术和政治科学领域的相关度最低。
位于马萨诸塞州波士顿的哈佛医学院的生物医学信息学专家Marinka Zitnik表示,该论文的方法很有趣,因为它允许对多个科学学科进行系统分析。但她也指出了其局限性:“因为作者们想要进行一个非常广泛、系统的研究,这意味着他们不一定能够深入理解为什么特定的动词或名词会出现在一篇论文中。”
她注意到,仅仅因为某些动词和名词在论文中同时出现,并不意味着如果人工智能能够执行所描述的任务,它就一定会对该领域有用。