小罗碎碎念
今天和大家分享一篇国自然青年基金项目,执行年限为2020-2022。
项目旨在解决立体定位放射治疗(SBRT)中肿瘤靶区勾画的不一致性和跨模态位移引起的定位不准确性问题。
项目的研究内容包括:基于对抗网络的数据增强和标注自动生成模型,CT-MRI跨模态位移原理及方法,以及基于注意力机制对抗分割模型的研究。项目还建立了统一的肿瘤分割算法benchmark测试框架,以降低不同专家之间勾画的显著差异性问题。研究成果已在多家国内顶尖临床医院开展科研合作应用,推动了该领域的发展。
项目取得了显著成果,包括发表11篇论文(其中SCI检索9篇),申请中国发明专利3项,培养博士、硕士研究生5人,参加和组织学术交流4次。项目负责人利用研发的算法模型在多家医院开展新型影像智能分析技术研究,获得了**省科技进步二等奖等多项奖励。
一、项目摘要
随着成像与定位技术的快速发展,放射治疗近年来成为癌症的重要治疗方式,如何实现精准治疗是当前的研究热点。
对肿瘤靶区勾画是放疗的关键步骤,临床医生需要在计划CT中勾画出靶区和危及器官的轮廓,这一步骤极为耗时耗力。
肿瘤靶区的精准勾画是可保障放疗计划系统能够有针对性地将剂量准确投射到病灶区域,但是现有的靶区勾画算法在临床应用上还存在肿瘤靶区勾画精度低,跨模态域位移导致肿瘤边界勾画不准确,以及缺乏统一的benchmark方法评价算法性能等技术瓶颈问题。
本研究由以下几个方面展开:
- 研究医学影像训练数据增强和标签自动生成,以获得高质量标注的肿瘤影像数据;
- 基于注意力机制进行CT-MRI跨模态融合分割的模型理论与实验研究;
- 在此基础上还将研究延伸拓展至数字病理图像智能分析;
- 通过肿瘤影像benchmark数据平台开发,建立有效且客观的评价方法,从而真正意义实现靶区自动勾画方法在临床上的推广应用。
本项目累计发表文章11篇,申请专利3项,软件著作权1项;培养博士、硕士研究生5人;参加和组织学术交流4次。
二、主要研究内容
癌症是导致人类死亡的主要原因之一。
据统计,2020年全球新增癌症患者约1930万,死亡人数高达1000万。癌症逐渐成为世界各国提高预期寿命的主要障碍之一,尤其是对于中国,由于人口众多且部分地区经济发展较为落后,癌症病人数和死亡人数十分巨大。最新统计数据显示,2022年我国新增癌症患者482万,死亡321万。
面对如此巨大的癌症患者数量,如何提高治疗的效率成为了当前的研究热点。在治疗过程中,大部分癌症患者都会接受放射治疗。放射治疗的实施需要临床医生在计划CT中勾画出靶区和危及器官的轮廓,这一步骤极为耗时耗力。肿瘤靶区的精准勾画对于保障放疗计划系统能够有针对性地将剂量准确投射到特定区域至关重要。近年来,人工智能技术在图像分割领域的发展为放疗计划中CT图像靶区自动勾画带来了新的机遇。
主要研究内容包括:
- 医学影像训练数据增强和标签自动生成的研究。
- CT-MRI跨模态融合分割的基于注意力机制对抗模型理论和实验研究。
- 延伸拓展研究:数字病理图像智能分析技术。
- 肿瘤影像benchmark数据平台开发。
这些研究有望提高放射治疗的精确性和效率,从而改善癌症患者的治疗效果。
三、主要研究进展
四、项目成果
学术研究、技术创新和人才培养
- 在国际期刊和本领域会议上共发表了11篇论文,其中9篇被SCI(科学引文索引)检索,2篇被EI(工程索引)检索。
- 申请了3项中国发明专利。
- 培养了2名博士生和3名硕士研究生。
- 培养了1名具有初级职称的专业人员。
- 研发了1套医学影像分布式存储与智能靶区勾画软件系统。
项目成果转化及应用情况
- 利用研发的算法模型,在辽宁省肿瘤医院、中国医科大学附属第一医院、南方科技大学医院、深圳第三人民医院、广东省中医院、山东省肿瘤医院、中山大学附属肿瘤医院等多家国内顶尖临床医院开展科研合作应用。
- 开展了一系列新型影像智能分析技术研究,推动了该领域的发展。
- 与xx大学附属第一医院放疗科合作,建立了“头颈部肿瘤个体化精确放射治疗模式”,并因此获得2020年度**省科技进步二等奖。
- 项目负责人在2021年获得xx大学科研项目资助,用于影像引导肿瘤放疗技术的研发,并与该校共建了智能计算联合实验室。
知识星球
如需获取推文中提及的各种资料,欢迎加入我的知识星球!