高数 函数的连续性与间断点

写在前面

我们学过的很多函数都是连续的。如何描述函数的连续性呢?这篇博客告诉大家该怎么用数学的语言来精确刻画函数的连续性,同时介绍间断点的概念。


一、 函数的连续性

通俗地来说,函数的连续性描述了函数的一种连绵不断变化的状态。

在这里插入图片描述

也就是说,自变量的微小变动只会引起函数值的微小变动。

描述自变量的微小变化,我们引出增量的概念:

设变量 u u u 从它的一个初值 u 1 u_1 u1 变到终值 u 2 u_2 u2,终值与初值的差就叫做变量 u u u 的增量,记作 Δ u \Delta u Δu,即 Δ u = u 2 − u 1 \Delta u=u_2-u_1 Δu=u2u1

增量可正可负。

现有一个函数 y = f ( x ) y=f(x) y=f(x),假定它在点 x 0 x_0 x0 的某一个邻域内是有定义的。自变量 x x x 在该邻域内从 x 0 x_0 x0 变为 x 0 + Δ x x_0+\Delta x x0+Δx,函数值(因变量)的变化情况,同样可以根据对应的增量来表示: Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \Delta y=f(x_0+\Delta x)-f(x_0) Δy=f(x0+Δx)f(x0)
Δ y \Delta y Δy 就是函数的增量。

根据刚刚所说的“自变量的微小变动只会引起函数值的微小变动”这一特性,就可以这样描述连续性:如果当 Δ x \Delta x Δx 趋于零时,函数的对应增量 Δ y \Delta y Δy 也趋于零,即 lim ⁡ Δ x → 0 Δ y = 0 \displaystyle\lim_{\Delta x\to0}\Delta y=0 Δx0limΔy=0 lim ⁡ Δ x → 0 [ f ( x 0 + Δ x ) − f ( x 0 ) ] = 0 , \displaystyle\lim_{\Delta x\to0}[f(x_0+\Delta x)-f(x_0)]=0, Δx0lim[f(x0+Δx)f(x0)]=0 那么就称函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_0 x0 处是连续的。

1. 函数连续的定义

根据上述分析,即可得到函数连续的定义:

定义
设函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_0 x0 的某一邻域内有定义,如果 lim ⁡ Δ x → 0 Δ y = lim ⁡ Δ x → 0 [ f ( x 0 + Δ x ) − f ( x 0 ) ] = 0 \displaystyle\lim_{\Delta x\to0}\Delta y=\lim_{\Delta x\to0}[f(x_0+\Delta x)-f(x_0)]=0 Δx0limΔy=Δx0lim[f(x0+Δx)f(x0)]=0那么就称函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_0 x0 连续。

x = x 0 + Δ x x=x_0+\Delta x x=x0+Δx,因为 Δ y = f ( x 0 + Δ x ) − f ( x 0 ) = f ( x ) − f ( x 0 ) \Delta y=f(x_0+\Delta x)-f(x_0)=f(x)-f(x_0) Δy=f(x0+Δx)f(x0)=f(x)f(x0)
f ( x ) = f ( x 0 ) + Δ y f(x)=f(x_0)+\Delta y f(x)=f(x0)+Δy
所以 Δ y → 0 \Delta y\to0 Δy0 就是 f ( x ) → f ( x 0 ) f(x)\to f(x_0) f(x)f(x0),所以函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_0 x0 连续的定义又有另外一种叙述方式。

设函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_0 x0 的某一邻域内有定义,如果 lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \displaystyle\lim_{x\to x_0}f(x)=f(x_0) xx0limf(x)=f(x0)那么就称函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_0 x0 连续。

由极限的定义可知,函数连续的定义还可表示为:
f ( x ) f(x) f(x) 在点 x 0 x_0 x0 连续 ⇔ ∀ ε > 0 \Leftrightarrow\forall\varepsilon>0 ε>0 ∃ δ > 0 \exist\delta>0 δ>0,当 ∣ x − x 0 ∣ < δ |x-x_0|<\delta xx0<δ 时,有 ∣ f ( x ) − f ( x 0 ) ∣ < ε |f(x)-f(x_0)|<\varepsilon f(x)f(x0)<ε

2. 左连续和右连续

可以根据连续的概念,得到左连续和右连续的概念。

定义
如果 lim ⁡ x → x 0 − f ( x ) = f ( x 0 − ) \displaystyle\lim_{x\to x_0^-}f(x)=f(x_0^-) xx0limf(x)=f(x0) 存在且等于 f ( x 0 ) f(x_0) f(x0),即 f ( x 0 − ) = f ( x ) f(x_0^-)=f(x) f(x0)=f(x) 那么就说函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 左连续。

右连续的概念是类似的。

3. 证明函数连续

在区间上每一点都连续的函数,叫做在该区间上的连续函数,或者说函数在该区间上连续。函数在右端点连续是指左连续,在左端点连续是指右连续。
连续函数的图形是一条连续而不间断的曲线。

  • 有理整函数(多项式函数)在区间 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+) 内是连续的。
  • 有理分式函数 f ( x ) = p ( x ) q ( x ) f(x)=\dfrac{p(x)}{q(x)} f(x)=q(x)p(x) 在定义域内的每一点都是连续的。

怎么证明一个给定的函数在某个区间内是连续的呢?

举个例子🌰
证明函数 y = sin ⁡ x y=\sin x y=sinx 在区间 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+) 内是连续的。

证明:
x x x 是区间 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+) 内任意取定的一点,当 x x x 有增量 Δ x \Delta x Δx 时,对应的函数的增量为 Δ = sin ⁡ ( x + Δ x ) − sin ⁡ x \Delta=\sin(x+\Delta x)-\sin x Δ=sin(x+Δx)sinx由和差化积公式,有 sin ⁡ ( x + Δ x ) − sin ⁡ x = 2 sin ⁡ Δ x 2 cos ⁡ ( x + Δ x 2 ) \sin(x+\Delta x)-\sin x=2\sin\dfrac{\Delta x}2\cos\Big(x+\dfrac{\Delta x}2\Big) sin(x+Δx)sinx=2sin2Δxcos(x+2Δx)因为 ∣ cos ⁡ ( x + Δ x 2 ) ∣ ≤ 1 \Big|\cos\Big(x+\dfrac{\Delta x}2\Big)\Big|\le1 cos(x+2Δx) 1,所以 ∣ Δ y ∣ = ∣ sin ⁡ ( x + Δ x ) − sin ⁡ x ∣ ≤ 2 ∣ sin ⁡ Δ x 2 ∣ |\Delta y|=|\sin(x+\Delta x)-\sin x|\le2\Big|\sin\dfrac{\Delta x}2\Big| ∣Δy=sin(x+Δx)sinx2 sin2Δx 因为对于任意角 α \alpha α,当 α ≠ 0 \alpha\ne0 α=0 时有 ∣ sin ⁡ α ∣ < α |\sin\alpha|<\alpha sinα<α,所以 0 ≤ ∣ Δ y ∣ = ∣ sin ⁡ ( x + Δ x ) − sin ⁡ x ∣ ≤ ∣ Δ x ∣ 0\le|\Delta y|=|\sin(x+\Delta x)-\sin x|\le|\Delta x| 0∣Δy=sin(x+Δx)sinx∣Δx所以当 x 0 → 0 x_0\to0 x00 时,由夹逼准则得 ∣ Δ y ∣ → 0 |\Delta y|\to0 ∣Δy0,所以 y = sin ⁡ x y=\sin x y=sinx 对于任一 x ∈ ( − ∞ , + ∞ ) x\in(-\infty,+\infty) x(,+) 是连续的。

*类似地可以证明 y = cos ⁡ x y=\cos x y=cosx ( − ∞ , + ∞ ) (-\infty,+\infty) (,+) 是连续的。

这种证明函数在区间内连续的方法,就是直接利用极限的定义证明,当然还有其他方法(会运用到导数),之后再说。


二、函数的间断点

有连续就有间断。什么情况之下函数在某点不连续呢?

1. 间断点

设函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 的某去心邻域内有定义。在此前提下,如果函数 f ( x ) f(x) f(x) 有下列三种情形之一:

  • x = x 0 x=x_0 x=x0 处没有定义
  • 虽在 x = x 0 x=x_0 x=x0 处有定义,但 lim ⁡ x → x 0 f ( x ) \displaystyle\lim_{x\to x_0}f(x) xx0limf(x) 不存在
  • 虽在 x = x 0 x=x_0 x=x0 处有定义,且 lim ⁡ x → x 0 f ( x ) \displaystyle\lim_{x\to x_0}f(x) xx0limf(x) 存在,但 lim ⁡ x → x 0 f ( x ) ≠ f ( x 0 ) \displaystyle\lim_{x\to x_0}f(x)\ne f(x_0) xx0limf(x)=f(x0)
    那么函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 为不连续,而点 x 0 x_0 x0 称为函数 f ( x ) f(x) f(x) 的不连续点或间断点。x

2. 间断点的常见类型

2.1 无穷间断点

函数在该点可以无定义,且左极限、右极限至少有一个不存在,且函数在该点极限为 ∞ \infty .

比如正切函数 y = tan ⁡ x y=\tan x y=tanx

在这里插入图片描述

因为 lim ⁡ x → π 2 tan ⁡ x = ∞ \displaystyle\lim_{x\to\frac\pi2}\tan x=\infty x2πlimtanx=,所以 x = π 2 x=\dfrac\pi2 x=2π 为函数 tan ⁡ x \tan x tanx 的无穷间断点。

2.2 振荡间断点

函数在该点可以无定义,当自变量趋于该点时,函数值在两个常数间变动无线多次。

比如函数 y = sin ⁡ 1 x y=\sin\dfrac1x y=sinx1

在这里插入图片描述

它在 x = 0 x=0 x=0 处无定义;当 x → 0 x\to0 x0 时,函数值在 − 1 -1 1 1 1 1 之间变动无线多次,所以点 x = 0 x=0 x=0 是函数 y = sin ⁡ 1 x y=\sin\dfrac1x y=sinx1 的振荡间断点。

2.3 可去间断点

函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义。

比如函数 y = x 2 − 1 x − 1 y=\dfrac{x^2-1}{x-1} y=x1x21

请添加图片描述
x = 1 x=1 x=1 处无定义,所以 x = 1 x=1 x=1 是函数 y = x 2 − 1 x − 1 y=\dfrac{x^2-1}{x-1} y=x1x21 的可去间断点。

2.4 跳跃间断点

函数在该点左极限、右极限存在但不相等。

比如分段函数 f ( x ) = { x − 1 , x < 0 0 , x = 0 x + 1 , x > 0 f(x)=\begin{cases}x-1,x<0\\0,x=0\\x+1,x>0\end{cases} f(x)= x1,x<00,x=0x+1,x>0

这个函数的图像就不画了。
x → 0 x\to0 x0 时, lim ⁡ x → 0 − f ( x ) = − 1 \displaystyle\lim_{x\to0^-}f(x)=-1 x0limf(x)=1 lim ⁡ x → 0 + f ( x ) = 1 \displaystyle\lim_{x\to0^+}f(x)=1 x0+limf(x)=1,左极限和右极限虽然都存在但不相等,所以极限 lim ⁡ x → 0 f ( x ) \displaystyle\lim_{x\to0}f(x) x0limf(x) 不存在,所以 x = 0 x=0 x=0 是函数 f ( x ) f(x) f(x) 的跳跃间断点。

通常,把间断点分为两类:

  • 第一类间断点:左右极限都存在
  • 第二类间断点:不是第一类间断点的任何间断点

根据以上分类,可去间断点和跳跃间断点属于第一类间断点,而无穷间断点和振荡间断点属于第二类间断点。


后话

没啥好说的,如有错误,恳请指出。
谢谢支持。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值