文章目录
写在前面
我们学过的很多函数都是连续的。如何描述函数的连续性呢?这篇博客告诉大家该怎么用数学的语言来精确刻画函数的连续性,同时介绍间断点的概念。
一、 函数的连续性
通俗地来说,函数的连续性描述了函数的一种连绵不断变化的状态。
也就是说,自变量的微小变动只会引起函数值的微小变动。
描述自变量的微小变化,我们引出增量的概念:
设变量 u u u 从它的一个初值 u 1 u_1 u1 变到终值 u 2 u_2 u2,终值与初值的差就叫做变量 u u u 的增量,记作 Δ u \Delta u Δu,即 Δ u = u 2 − u 1 \Delta u=u_2-u_1 Δu=u2−u1
增量可正可负。
现有一个函数
y
=
f
(
x
)
y=f(x)
y=f(x),假定它在点
x
0
x_0
x0 的某一个邻域内是有定义的。自变量
x
x
x 在该邻域内从
x
0
x_0
x0 变为
x
0
+
Δ
x
x_0+\Delta x
x0+Δx,函数值(因变量)的变化情况,同样可以根据对应的增量来表示:
Δ
y
=
f
(
x
0
+
Δ
x
)
−
f
(
x
0
)
\Delta y=f(x_0+\Delta x)-f(x_0)
Δy=f(x0+Δx)−f(x0)
Δ
y
\Delta y
Δy 就是函数的增量。
根据刚刚所说的“自变量的微小变动只会引起函数值的微小变动”这一特性,就可以这样描述连续性:如果当 Δ x \Delta x Δx 趋于零时,函数的对应增量 Δ y \Delta y Δy 也趋于零,即 lim Δ x → 0 Δ y = 0 \displaystyle\lim_{\Delta x\to0}\Delta y=0 Δx→0limΔy=0 或 lim Δ x → 0 [ f ( x 0 + Δ x ) − f ( x 0 ) ] = 0 , \displaystyle\lim_{\Delta x\to0}[f(x_0+\Delta x)-f(x_0)]=0, Δx→0lim[f(x0+Δx)−f(x0)]=0, 那么就称函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_0 x0 处是连续的。
1. 函数连续的定义
根据上述分析,即可得到函数连续的定义:
定义
设函数
y
=
f
(
x
)
y=f(x)
y=f(x) 在点
x
0
x_0
x0 的某一邻域内有定义,如果
lim
Δ
x
→
0
Δ
y
=
lim
Δ
x
→
0
[
f
(
x
0
+
Δ
x
)
−
f
(
x
0
)
]
=
0
\displaystyle\lim_{\Delta x\to0}\Delta y=\lim_{\Delta x\to0}[f(x_0+\Delta x)-f(x_0)]=0
Δx→0limΔy=Δx→0lim[f(x0+Δx)−f(x0)]=0那么就称函数
y
=
f
(
x
)
y=f(x)
y=f(x) 在点
x
0
x_0
x0 连续。
设 x = x 0 + Δ x x=x_0+\Delta x x=x0+Δx,因为 Δ y = f ( x 0 + Δ x ) − f ( x 0 ) = f ( x ) − f ( x 0 ) \Delta y=f(x_0+\Delta x)-f(x_0)=f(x)-f(x_0) Δy=f(x0+Δx)−f(x0)=f(x)−f(x0)
即 f ( x ) = f ( x 0 ) + Δ y f(x)=f(x_0)+\Delta y f(x)=f(x0)+Δy
所以 Δ y → 0 \Delta y\to0 Δy→0 就是 f ( x ) → f ( x 0 ) f(x)\to f(x_0) f(x)→f(x0),所以函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_0 x0 连续的定义又有另外一种叙述方式。
设函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_0 x0 的某一邻域内有定义,如果 lim x → x 0 f ( x ) = f ( x 0 ) \displaystyle\lim_{x\to x_0}f(x)=f(x_0) x→x0limf(x)=f(x0)那么就称函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_0 x0 连续。
由极限的定义可知,函数连续的定义还可表示为:
f
(
x
)
f(x)
f(x) 在点
x
0
x_0
x0 连续
⇔
∀
ε
>
0
\Leftrightarrow\forall\varepsilon>0
⇔∀ε>0,
∃
δ
>
0
\exist\delta>0
∃δ>0,当
∣
x
−
x
0
∣
<
δ
|x-x_0|<\delta
∣x−x0∣<δ 时,有
∣
f
(
x
)
−
f
(
x
0
)
∣
<
ε
|f(x)-f(x_0)|<\varepsilon
∣f(x)−f(x0)∣<ε
2. 左连续和右连续
可以根据连续的概念,得到左连续和右连续的概念。
定义
如果
lim
x
→
x
0
−
f
(
x
)
=
f
(
x
0
−
)
\displaystyle\lim_{x\to x_0^-}f(x)=f(x_0^-)
x→x0−limf(x)=f(x0−) 存在且等于
f
(
x
0
)
f(x_0)
f(x0),即
f
(
x
0
−
)
=
f
(
x
)
f(x_0^-)=f(x)
f(x0−)=f(x) 那么就说函数
f
(
x
)
f(x)
f(x) 在点
x
0
x_0
x0 左连续。
右连续的概念是类似的。
3. 证明函数连续
在区间上每一点都连续的函数,叫做在该区间上的连续函数,或者说函数在该区间上连续。函数在右端点连续是指左连续,在左端点连续是指右连续。
连续函数的图形是一条连续而不间断的曲线。
- 有理整函数(多项式函数)在区间 ( − ∞ , + ∞ ) (-\infty,+\infty) (−∞,+∞) 内是连续的。
- 有理分式函数 f ( x ) = p ( x ) q ( x ) f(x)=\dfrac{p(x)}{q(x)} f(x)=q(x)p(x) 在定义域内的每一点都是连续的。
怎么证明一个给定的函数在某个区间内是连续的呢?
举个例子🌰
证明函数
y
=
sin
x
y=\sin x
y=sinx 在区间
(
−
∞
,
+
∞
)
(-\infty,+\infty)
(−∞,+∞) 内是连续的。
证明:
设 x x x 是区间 ( − ∞ , + ∞ ) (-\infty,+\infty) (−∞,+∞) 内任意取定的一点,当 x x x 有增量 Δ x \Delta x Δx 时,对应的函数的增量为 Δ = sin ( x + Δ x ) − sin x \Delta=\sin(x+\Delta x)-\sin x Δ=sin(x+Δx)−sinx由和差化积公式,有 sin ( x + Δ x ) − sin x = 2 sin Δ x 2 cos ( x + Δ x 2 ) \sin(x+\Delta x)-\sin x=2\sin\dfrac{\Delta x}2\cos\Big(x+\dfrac{\Delta x}2\Big) sin(x+Δx)−sinx=2sin2Δxcos(x+2Δx)因为 ∣ cos ( x + Δ x 2 ) ∣ ≤ 1 \Big|\cos\Big(x+\dfrac{\Delta x}2\Big)\Big|\le1 cos(x+2Δx) ≤1,所以 ∣ Δ y ∣ = ∣ sin ( x + Δ x ) − sin x ∣ ≤ 2 ∣ sin Δ x 2 ∣ |\Delta y|=|\sin(x+\Delta x)-\sin x|\le2\Big|\sin\dfrac{\Delta x}2\Big| ∣Δy∣=∣sin(x+Δx)−sinx∣≤2 sin2Δx 因为对于任意角 α \alpha α,当 α ≠ 0 \alpha\ne0 α=0 时有 ∣ sin α ∣ < α |\sin\alpha|<\alpha ∣sinα∣<α,所以 0 ≤ ∣ Δ y ∣ = ∣ sin ( x + Δ x ) − sin x ∣ ≤ ∣ Δ x ∣ 0\le|\Delta y|=|\sin(x+\Delta x)-\sin x|\le|\Delta x| 0≤∣Δy∣=∣sin(x+Δx)−sinx∣≤∣Δx∣所以当 x 0 → 0 x_0\to0 x0→0 时,由夹逼准则得 ∣ Δ y ∣ → 0 |\Delta y|\to0 ∣Δy∣→0,所以 y = sin x y=\sin x y=sinx 对于任一 x ∈ ( − ∞ , + ∞ ) x\in(-\infty,+\infty) x∈(−∞,+∞) 是连续的。
*类似地可以证明 y = cos x y=\cos x y=cosx 在 ( − ∞ , + ∞ ) (-\infty,+\infty) (−∞,+∞) 是连续的。
这种证明函数在区间内连续的方法,就是直接利用极限的定义证明,当然还有其他方法(会运用到导数),之后再说。
二、函数的间断点
有连续就有间断。什么情况之下函数在某点不连续呢?
1. 间断点
设函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 的某去心邻域内有定义。在此前提下,如果函数 f ( x ) f(x) f(x) 有下列三种情形之一:
- 在 x = x 0 x=x_0 x=x0 处没有定义
- 虽在 x = x 0 x=x_0 x=x0 处有定义,但 lim x → x 0 f ( x ) \displaystyle\lim_{x\to x_0}f(x) x→x0limf(x) 不存在
- 虽在
x
=
x
0
x=x_0
x=x0 处有定义,且
lim
x
→
x
0
f
(
x
)
\displaystyle\lim_{x\to x_0}f(x)
x→x0limf(x) 存在,但
lim
x
→
x
0
f
(
x
)
≠
f
(
x
0
)
\displaystyle\lim_{x\to x_0}f(x)\ne f(x_0)
x→x0limf(x)=f(x0)
那么函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 为不连续,而点 x 0 x_0 x0 称为函数 f ( x ) f(x) f(x) 的不连续点或间断点。x
2. 间断点的常见类型
2.1 无穷间断点
函数在该点可以无定义,且左极限、右极限至少有一个不存在,且函数在该点极限为 ∞ \infty ∞ .
比如正切函数 y = tan x y=\tan x y=tanx:
因为 lim x → π 2 tan x = ∞ \displaystyle\lim_{x\to\frac\pi2}\tan x=\infty x→2πlimtanx=∞,所以 x = π 2 x=\dfrac\pi2 x=2π 为函数 tan x \tan x tanx 的无穷间断点。
2.2 振荡间断点
函数在该点可以无定义,当自变量趋于该点时,函数值在两个常数间变动无线多次。
比如函数 y = sin 1 x y=\sin\dfrac1x y=sinx1:
它在 x = 0 x=0 x=0 处无定义;当 x → 0 x\to0 x→0 时,函数值在 − 1 -1 −1 与 1 1 1 之间变动无线多次,所以点 x = 0 x=0 x=0 是函数 y = sin 1 x y=\sin\dfrac1x y=sinx1 的振荡间断点。
2.3 可去间断点
函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义。
比如函数 y = x 2 − 1 x − 1 y=\dfrac{x^2-1}{x-1} y=x−1x2−1:
在
x
=
1
x=1
x=1 处无定义,所以
x
=
1
x=1
x=1 是函数
y
=
x
2
−
1
x
−
1
y=\dfrac{x^2-1}{x-1}
y=x−1x2−1 的可去间断点。
2.4 跳跃间断点
函数在该点左极限、右极限存在但不相等。
比如分段函数 f ( x ) = { x − 1 , x < 0 0 , x = 0 x + 1 , x > 0 f(x)=\begin{cases}x-1,x<0\\0,x=0\\x+1,x>0\end{cases} f(x)=⎩ ⎨ ⎧x−1,x<00,x=0x+1,x>0
这个函数的图像就不画了。
当
x
→
0
x\to0
x→0 时,
lim
x
→
0
−
f
(
x
)
=
−
1
\displaystyle\lim_{x\to0^-}f(x)=-1
x→0−limf(x)=−1,
lim
x
→
0
+
f
(
x
)
=
1
\displaystyle\lim_{x\to0^+}f(x)=1
x→0+limf(x)=1,左极限和右极限虽然都存在但不相等,所以极限
lim
x
→
0
f
(
x
)
\displaystyle\lim_{x\to0}f(x)
x→0limf(x) 不存在,所以
x
=
0
x=0
x=0 是函数
f
(
x
)
f(x)
f(x) 的跳跃间断点。
通常,把间断点分为两类:
- 第一类间断点:左右极限都存在
- 第二类间断点:不是第一类间断点的任何间断点
根据以上分类,可去间断点和跳跃间断点属于第一类间断点,而无穷间断点和振荡间断点属于第二类间断点。
后话
没啥好说的,如有错误,恳请指出。
谢谢支持。