近五年人工智能在数字病理学领域的发展|顶刊精析·25-02-14

小罗碎碎念

今天和大家分享的这篇文章于2025-02-11发表于Nature Reviews Clinical Oncology,回顾了 2019 - 2024 年间人工智能在数字病理学领域的发展,探讨了其技术进步、监管、临床应用及面临的挑战。

https://doi.org/10.1038/s41571-025-00991-6

作者类型姓名单位(中文)
第一作者Arpit Aggarwal、Satvika Bharadwaj埃默里大学和佐治亚理工学院华莱士·H·库尔特生物医学工程系;亚特兰大退伍军人事务医疗中心(Arpit Aggarwal、Satvika Bharadwaj 同时隶属于这两个单位)
通讯作者Anant Madabhushi埃默里大学和佐治亚理工学院华莱士·H·库尔特生物医学工程系;亚特兰大退伍军人事务医疗中心

过去五年,数字病理学中的人工智能技术取得显著进展,从依赖卷积神经网络(CNNs)转向采用 Transformer 和基础模型。

基础模型通过自监督学习,能在无需大量标注数据的情况下进行特征学习,在肿瘤检测、预后预测等任务中表现出色,但也存在局限性。多模态人工智能结合多种数据来源,有助于更全面地理解疾病,为临床决策提供支持

自 2019 年以来,基于人工智能和机器学习的医疗设备获得 FDA 批准的数量大幅增加,但数字病理学领域的获批设备数量相对较少。在报销方面,美国和欧洲等地区针对数字病理学的报销框架不断发展,如美国新增了用于追踪数字病理学技术的临时 CPT 代码,欧洲部分国家也通过不同项目支持数字健康举措。临床部署方面,人工智能在数字病理学中的应用需符合监管标准并与现有系统兼容,目前主要用于多种癌症相关任务,但全球范围内数字病理学的临床应用仍较为缓慢

数字病理学发展迅速,吸引了大量投资,学术研究成果丰富。然而,该领域存在学术研究、产业开发与临床应用之间的差距,不同国家的数字病理学实施情况差异较大,面临设备成本高、资金不足等问题。此外,新兴技术如光片荧光显微镜和分子数字病理学带来了新的竞争和变革。人工智能技术融入临床工作流程尚处于早期阶段,需要严格的验证和监管,同时也需要提升病理学家的相关技能,未来需多方合作推动其在临床实践中的常规应用。


知识星球

如需获取推文中提及的各种资料,欢迎加入我的知识星球!


一、引言

人工智能(AI)融入日常医疗应用具有在多个医学领域推动重大进步的潜力,能够提高诊断的精确性、工作流程的效率以及患者预后的预测能力1,2。

病理学是肿瘤学的诊断基础,对于精确识别和表征癌症至关重要,这对于制定有效的治疗方案和推进癌症研究具有重要意义3。

病理学传统上依赖于显微镜下对组织样本的视觉检查,但随着数字化图像的出现,病理学已发生显著演变3。这一转变促使了包括AI整合在内的进一步创新4–6。

随着这些技术的发展,我们必须评估AI在临床病理学中的采纳程度,特别是在与肿瘤学相关的应用中,并识别阻碍更广泛实施的因素。


2019年,作者与其他专家合作,评估了在肿瘤学数字病理学中应用的一系列基于AI的方法,并预测了该领域关键领域的主要发展7。

作者预期技术将取得进步,特别是在基于图像分析的诊断和预后效率与准确性方面。作者还预见到监管变化,特别是针对美国食品药品监督管理局(FDA),预测其将增加对AI相关设备的批准数量,并引入报销代码,这将增加数字病理学的临床接受度,其他地区也将出现类似的进步。

此外,作者强调了通过临床试验将AI融入临床工作流程的重要性,并预测关键公司的商业投资将推动进一步的创新。


在本篇观点文章中,作者回顾了五年前对肿瘤学数字病理学领域的预测,评估这些预测是否实现,并识别阻碍其实现的挑战,重点放在AI的进步和采纳上,以及数字病理学本身采用的障碍之外。

作者首先分析了解决关键技术挑战(如数据标注、可解释性和计算复杂性)的技术进步。接着,作者考察了监管机构的作用,比较了数字病理学和其他医学专业应用的审批情况。

作者讨论了报销框架的变化,包括新账单代码的引入和体外诊断工具的发展,特别是自制设备和实验室开发测试(LDTs)。

最后,作者探讨了临床部署的当前状况,突出了正在进行的临床试验,这些试验调查了AI在临床肿瘤学常规实践中的整合。


二、人工智能模型发展进展

在过去的五年中,数字病理学中的人工智能领域已发生显著演变,从最初依赖卷积神经网络(CNNs)8,9转变为采用更先进的技术,如transformers10以及随后用于执行包括预测患者预后和对治疗反应11,13–17,23–57等多种任务的基础模型(foundation models)。

最初,研究人员主要使用全监督学习模型,这些模型需要大量标注数据集进行训练9,25,40,48,其中包括广泛应用于图像分类、分割和检测等任务的CNNs9,48。

然而,已经出现了一个显著的转变,首先是向弱监督学习模型58转变,随后发展为自监督学习模型49,这些模型通过使模型能够从未标注的大量数据中学习,减少了广泛手动标注的需求39。


基础模型在计算病理学中构成了一个重大进步11–22。

这些模型的常见训练策略是自监督学习方法,例如DINOv2(参考文献59),它无需标注数据即可实现稳健的特征学习。

一旦训练完成,基础模型可以针对特定的病理学任务进行微调,显示出在图像分类、分割和其他应用11–22中的优异性能。

例如,PLUTO基础模型22在核和腺体分割方面相对于其他基于CNN的模型表现更佳,免疫组化基础分割的F1分数(计算精度和召回率的相对贡献)为0.8,苏木精-伊红基础分割的F1分数为0.65。


基础模型在预测患者预后和对治疗反应方面显示出潜力11,13–17。

例如,UNI基础模型11在表征肿瘤微环境方面显示出巨大潜力,包括识别在预后和反应预测中发挥关键作用的肿瘤浸润淋巴细胞23,41。

在一项使用来自癌症基因组图谱的肿瘤浸润淋巴细胞数据集的泛癌症分析中,UNI模型在样本级别的曲线下面积(AUC)达到了0.979,优于之前报告AUC在0.97至0.975之间的框架23,41。

另一个重要的应用是肿瘤检测和分类,在这些模型中,它们在泛癌症数据集中有效地区分良性病变和恶性病变13,21。例如,Virchow基础模型13,21在计算病理学中设定了新的基准,超越了之前框架在泛癌症检测等任务中的表现,常见癌症的样本级别AUC为0.95(与之前框架的典型范围0.9–0.93相比),罕见癌症的样本级别AUC为0.93(与之前框架的典型范围0.88–0.92相比)。


模型的局限性

一项比较分析60显示,基于CNN的模型可以胜过基础模型

该研究特别强调了基于CNN的模型在乳腺、肝脏、皮肤和结直肠癌的全切片图像检索(即识别训练数据集中与癌症相关特征的相似性)方面的优越性能60。

这一发现强调了精心策划高质量、特定领域数据集以训练可靠和稳健的基础模型以最高可能的准确度执行特定任务的重要性


多模态

多模态人工智能的发展,即将来自多个来源的数据,包括病理图像、基因组学数据以及临床报告中的文本数据相结合,是计算病理学领域的另一项重大进展50,61–65。

多模态方法促进了对疾病机制和患者预后的更全面理解。例如,Spratt等人61开发了一种多模态人工智能方法,该方法使用了来自5,727名患者的治疗前前列腺组织图像和临床数据(中位随访时间为10年),这些患者参与了五个评估放疗联合或不联合雄激素剥夺治疗(ADT)的III期临床试验。

该模型预测了远处转移并识别了可能从ADT中受益的患者。使用来自NRG肿瘤学/RTOG 9408试验的数据进行验证,该试验的中位随访时间为14.9年,结果显示ADT显著降低了34%被模型判定为阳性的患者的转移发生几率,而对于被模型判定为阴性的66%的患者则没有提供益处61。该研究突出了人工智能的预测价值及其在改善临床决策中的潜在作用。


三、临床人工智能部署的进展

3-1:监管决策

自2019年以来,基于人工智能和/或机器学习的设备获得美国食品药品监督管理局(FDA)的批准数量显著增加,从不到70项增长至目前超过1,000项(参考文献66,67)。

这一增长促使监管框架的演变,FDA和欧洲联盟(EU)的欧洲共同体(CE)适应指南以监管人工智能医疗设备68。

值得注意的是,欧盟于2024年提出的《人工智能法案》引入了全面的法定框架,通过基于风险的方法建立了全欧盟范围内的数据质量、透明度、人类监督和问责规则69。在发展这一监管框架的同时,如Concentriq AP-Dx70,71和Galen Prostate71等人工智能工具获得了CE标志(根据欧盟的体外诊断医疗设备法规(IVDR)72)。

在美国,FDA于2021年授权了基于人工智能的前列腺癌检测工具Paige Prostate的De Novo分类请求73,随后又为其他用于诊断目的的人工智能病理学工具,如PathAI、Roche Digital Pathology Dx74和Concentriq AP-Dx70颁发了510(k)清除决定。

然而,与其它医疗应用相比,数字病理学的人工智能工具批准数量相对较低。截至2024年12月(参考文献67),在美国,放射学在医疗设备软件领域占据显著优势(占所有FDA批准设备的76%),其次是心血管疾病(10%)和神经学(4%),而病理学仅批准了三个设备(<0.5%)(图1)。

如需获取更多医学AI相关的内容,欢迎扫码订阅我的知识星球。

这一趋势反映了人工智能在数字病理学中的整合速度慢于预期,尤其是考虑到放射学设备的批准等待时间中位数通常短于其他专业(包括病理学的193天)66。


3-2:报销

在美国,当前程序术语(CPT)代码为医疗专业人员提供了一个标准化的框架,用于准确报告医疗服务和程序的使用,确保索赔处理、医疗护理审查和保险报销的一致性和效率75。

有趣的是,用于放射学程序的广泛CPT代码涵盖了成像服务(代码70010–76499)76。与此同时,数字病理学在临床实践中的整合仍处于初期阶段。

在2019年之前,病理学相关的CPT代码主要涵盖传统的诊断服务,如组织活检和显微镜检查,而没有为数字或计算病理学提供特定规定。在2024年,新增了30个III类附加代码77,78,这些临时CPT代码用于跟踪新技术,加入到之前存在的13个代码中。

这些新代码是为了涉及切片数字化的服务而引入的,目前尚未建立支付率,预计这些代码将变成已建立的CPT代码(I类)79。


在欧盟,一些公共报销系统支持数字健康倡议80,通过各种资金来源建立数字病理学流程66。

例如,在德国,数字健康应用的快速报销途径正在通过数字健康应用(DiGA)计划80推进。该计划为监管批准和报销提供了快速通道,允许临床医生开处经批准的数字健康应用,这些应用由法定健康保险全额报销,覆盖了大量人口80。

在法国,通过PECAN计划,正在探索类似的道路,用于包括远程监测和数字治疗在内的数字健康解决方案80。许多欧洲国家,如英国、荷兰和比利时,也使用国家卫生保健报销计划的资金,报销基于人工智能的体外诊断测试80。

在亚洲,日本81和韩国82已为基于人工智能或机器学习的医疗设备建立了监管途径,强调安全性、透明度和性能。其他国家,包括中国83和印度84,已引入初步指南,旨在解决其卫生系统中人工智能技术相关的挑战


四、临床部署

人工智能在数字病理学中的应用需遵循监管标准,并与现有实验室信息系统兼容,以便融入临床实践92。

截至2023年5月31日,美国食品药品监督管理局(FDA)批准的用于肿瘤学和与肿瘤学相关领域(包括数字病理学和癌症放射学)的人工智能模型中,大部分(34%)用于一般实体恶性肿瘤,而31%专注于乳腺癌,8.5%分别用于前列腺癌和肺癌93。

目前,在肿瘤学中使用的人工智能数字病理学工具主要聚焦于免疫组化切片上特定区域的量化识别等任务。人工智能模型也被广泛应用于检测多种实体恶性肿瘤中的淋巴结转移,包括结直肠癌、乳腺癌和胃癌94–96。

这些工具的更广泛临床采纳将需要独立验证和正式监管批准。


2019年,人工智能工具在数字病理学中的临床部署尚处于初期阶段,大多数开始将活检样本图像数字化的机构主要将这些图像用于教学或分子肿瘤委员会目的。

然而,一些先进的实验室已经开始扫描整个机构的工作量97,在COVID-19大流行期间,这种做法得到了更广泛的采纳,以方便在家办公的设置92。

尽管有了这些发展,数字病理学的全球采纳速度仍然缓慢,这主要是由于基础设施需求,包括在硬件(扫描仪)、数字存储、强大服务器和基础设施方面的重大投资,同时也由于需要获得病理学家的支持92。


尽管在几个国家进行的调查显示了鼓舞人心的趋势,但这种缓慢的采纳仍然存在。

例如,2019年在瑞士进行的一项全国调查显示,66%的病理学家愿意在数字化切片上做出初步诊断,尽管调查完成率仅为39.5%(可能表明存在选择偏差)98。

同样,在英国进行的一项调查发现,31%的机构正在使用数字切片进行初步诊断,许多受访者优先考虑数字病理学,因为它有可能提高效率和协作99。


前瞻性临床试验的验证是人工智能基于工具在数字病理学中临床采纳的前进方向(图2)。

如需获取更多医学AI相关的内容,欢迎扫码订阅我的知识星球。

例如,正在进行的一些试验涉及结直肠癌或非小细胞肺癌患者,这些试验使用数字图像分析来识别潜在的免疫细胞生物标志物,如细胞毒性T细胞、PD-L1表达、肿瘤浸润淋巴细胞密度和肿瘤微环境中免疫细胞的空间关系6。

一项正在进行的前瞻性观察研究正在使用自动化工具来识别肠化生个体的全切片图像中的肿瘤区域,从而解决可用于胃癌筛查的病理学家短缺问题(NCT05447221)。DPAILO-1试验(NCT06344364)正在调查数字病理学评分在预测代谢功能障碍相关脂肪肝炎患者肝功能衰竭预后方面的表现,这种疾病可能导致肝细胞癌。

此外,人工智能辅助的图像生物标志物分析已被用于回顾性地重新评估英国/ANZ DCIS试验23,100和六项NRG放射治疗肿瘤学小组试验101的样本,分别涉及乳腺导管原位癌和高风险前列腺癌患者。

例如,Aggarwal等人100开发了一种基于胶原蛋白的计算病理学生物标志物,并证明了其在预测UK/ANZ DCIS试验中他莫昔芬益处的作用(n = 755患者)。这些分析揭示了细粒度的患者分层,并有可能优化治疗策略。

这些举措展示了人工智能基于数字病理学的潜力,不仅适用于回顾性分析,还能自动化和简化前瞻性临床试验,使药物开发更高效、成本效益更高102。尽管越来越多的努力将人工智能融入数字病理学,特别是在前瞻性临床试验中,但这些举措在范围和数量上仍然有限103。


五、机遇与挑战

数字病理学改变了病理切片的观察和分析方式104。

1999年第一台全切片扫描仪的引入标志着病理图像数字化的重大进步105。然而,数字病理学直到2010年代才开始获得关注,全切片成像技术促进了其更广泛的采纳106。

自第一台扫描仪商业化以来,约二十二年,以及病理学中初始实施人工智能模型以来的大约十二年,计算病理学家在这些算法的开发和部署上取得了实质性进展。过去五年,计算病理学从早期使用卷积神经网络(CNNs)8,9发展到整合先进技术,如基础模型11–22,用于各种应用。

研究的重点已从基础任务,如图像分类、分割和检测,逐步转向更复杂的应用,包括预测患者预后和对治疗的反应11,15,21,22,36。这一转变与数字病理学学术研究的显著增长相并行,过去五年在PubMed索引的与人工智能和计算病理学相关的病理学文章约为10,000篇,而2015年至2019年间发布的文献约为3,000篇(参考文献107)。

随着这一扩展,数字病理学行业吸引了大量的投资兴趣,累计资金达到17.6亿美元108。值得注意的是,Owkin、PathAI和Paige这三家公司共计筹集了超过7800万美元108。

大型制药公司也建立了专门团队,提供端到端的数字病理学解决方案109,包括用于精准诊断的人工智能驱动生物标志物发现110。


尽管有了这些发展,基于人工智能的数字病理学应用在学术研究、行业开发者与临床实施之间仍存在差距,这从数字病理学获得FDA批准的人工智能工具数量有限可以看出97(图1)。

相比之下,放射学领域的批准数量显著增加,中位审批时间大约为200天,而病理学的中位审批时间为300天。这种差异可能归因于放射学在常规实践中生成和可用的数据量远大于病理学66。

事实上,病理学历史上依赖于物理玻璃切片和人工解读,这减缓了数字档案和计算工具的发展111。

此外,研究表明,通过优化各种工作流程的效率,数字病理学可以显著节省成本和时间112。例如,荷兰一家大型地区病理实验室进行的一项大型分析报告称,该机构每天平均节省19小时,估计每年节省12万欧元113。

美国一家中心进行的一项类似研究预测,实施数字病理学工作流程将在五年内节省130万美元114。在一家意大利机构中,采用数字系统后,咨询成本从3,365欧元降至300欧元,平均周转时间从12天降至1.4天115。引入人工智能后,由于自动案例分拣和智能案例分配,处理时间进一步缩短(详见其他文献116)。


数字病理学的实施在各国之间存在显著差异117。

对全球127个病理实验室进行的调查结果显示,挑战和方法的多样性受到地区因素的影响117。欧洲受访者强调,存储规划、实验室信息系统集成和大量的前期投资是实现全面数字化的关键要求117,而亚洲受访者报告了一种更渐进的实施方法,这可能是由于机构准备情况和资金可用性117。

这项研究强调,降低设备成本和确保资金对于加速数字病理学的采纳至关重要,由于机构准备情况、可用资源和卫生保健系统的差异,各国的成本差异很大117。同样,在美国,一项针对阿尔茨海默病研究中心的2019年调查发现,50%的扫描仪购买和运营成本由机构资金支持,这进一步强调了依赖机构资源的情况118。

在另一项研究中,印度研究人员报告称,确保夜间扫描的持续供电、维持不间断的互联网接入和需要高分辨率监视器是低收入和中等收入国家实施数字病理学的重大挑战119。竞争性技术的发展,如光片荧光显微镜(一种使用薄光片照亮样本以进行高分辨率、3D成像的技术)和分子数字病理学,提供了无切片解决方案120。

与传统基于玻璃切片的方法不同,这些方法实现了无损、体积化和化学成像(一种无标记成像方法,利用组织固有的化学性质,如振动或光谱信号,生成关于样本的详细分子和结构信息),直接提供组织样本的分子标记,而不是需要数字化玻璃切片120。

例如,光片荧光显微镜实现了无需切片的3D可视化121,而化学成像技术120在不进行染色的情况下提供了分子特异性。这些创新有可能通过提供关于组织结构和生化特性的更详细和全面的信息来转变传统工作流程。这些方法的采纳可能导致人工智能技术的改变和适应,随着新的数字病理学平台的出现。


尽管部分数字病理学扫描仪已获得监管批准70,74,122,但人工智能技术融入临床工作流程仍处于初期阶段97。

这种差异通常源于学术界对开发先进算法的重视,这些算法虽然创新,但有时会掩盖同样关键的严格验证和满足监管批准的要求,这对于临床采纳至关重要116,123–125。

某些国家通过严格的监管措施来解决这个问题,旨在平衡采用新技术的财务激励,同时确保患者安全。例如,中国国务院在2017年发布了《新一代人工智能发展规划》,列出了一系列战略和监管里程碑,旨在到2030年使中国成为人工智能的全球领导者126。

监管机构监督这一过程,并通过政府补贴激励本地项目,特别是技术初创企业126。在日本,没有约束性法规限制人工智能的使用127;然而,政府在2019年发布了《以人为本的人工智能社会原则》,提出了在实施人工智能时应关注人的尊严、多样性、包容性和可持续性的原则127。

这一努力旨在促进更广泛的采纳,并为开发特定人工智能模型以外的机构提供一个模型,以使用这些能力,同时确保实践中的安全性和一致性。


全面的验证是临床设置中安全有效部署人工智能工具的另一个关键要求116,123–125。在1995年至2022年间美国食品药品监督管理局(FDA)授权的521个人工智能设备中,56%经过了临床验证(28%回顾性验证和28%前瞻性验证);然而,43%的设备没有临床数据128。

作者在美国、欧洲和亚洲采访的大多数病理学家强调,对于预后和预测生物标志物的广泛验证对于降低患者的潜在风险至关重要(A.A.和Bharadwaj S.未发表结果)。他们进一步指出,人工智能工具必须在回顾性和前瞻性临床试验数据集中进行验证,以建立其临床可行性的坚实证据。ArteraAI前列腺测试87被纳入NCCN指南129是人工智能基于工具在数字病理学使用的关键里程碑89。

此外,同年英国三家医院对Paige前列腺的补充评估提供了一个机会,以评估该工具在癌症分级和检测中的效用。在未来几年对这些工具在临床设置中的采纳情况进行详细评估,将为进一步了解它们在治疗决策中的作用、影响监管考虑的因素以及财务影响(包括实施和维护成本)提供关键见解,这些都影响着临床采纳。


随着人工智能技术被整合到数字病理学中,更新病理学家的技能变得越来越重要104。

培训计划应关注人工智能在临床工作流程中的补充作用,帮助病理学家使用这些技术提高诊断的精确性和效率104。

通过辅助识别病理图像中的兴趣区域,人工智能使病理学家能够专注于详细分析,最终提高生产力和确保准确的评估131。作者为本研究采访的大多数病理学家指出,在培训环境中,人工智能应被视为一种增强工具,它增强而不是取代病理学家的角色。

本文中,作者讨论了与人工智能采纳相关的关键方面,如技术进步、监管趋势、报销框架、临床实施和商业投资;然而,作者承认本文视角范围之外还有几个重要因素未被讨论。

这些因素包括对塑造研究环境和加速人工智能发展至关重要的联邦研究倡议和机构资金,以及人工智能对劳动力相关方面的影响,如基于人工智能的数字病理学工作流程中技术人员的演变角色以及支持人工智能采纳的培训计划的可用性。

数据隐私法规、伦理和法律指南的作用也未讨论,这对于理解人工智能在数字病理学中的更广泛影响将是必要的。上述局限性反映了人工智能监管和采纳的复杂性质,需要继续进行研究。


六、结论

在2019年,作者对人工智能在肿瘤学数字病理学应用的未来做出了关键预测,预期了技术的快速进步、对监管批准的关注增加,以及两个重要需求:稳健的验证数据集和结构化的报销策略7。

五年后,部分预测已经实现,特别是人工智能融入临床工作流程5,6,这一点通过美国食品药品监督管理局(FDA)对Paige Prostate的批准得到了证明97,132。

然而,预期的监管批准增加速度并未达到其他医学领域中人工智能应用的水平66。在常规病理学中,基于人工智能的应用的临床整合仍然受到基础设施缺口133、报销途径134和监管框架133的限制。

解决这些障碍将需要学术界、产业界和监管机构的针对性努力,以完善标准、提高可解释性和确保在临床环境中的可扩展性。人工智能在数字病理学的未来取决于建立基于证据的指南135和可持续实施模型133的协作努力,以推进并将其整合到日常临床实践中。


结束语

本期推文的内容就到这里啦,如果需要获取医学AI领域的最新发展动态,请关注小罗的推送!如需进一步深入研究,获取相关资料,欢迎加入我的知识星球!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值