保姆级教程,带你复现病理AI的经典模型CLAM(一)|项目复现·24-08-19

小罗碎碎念

推文概述

复现CLAM的第一期推文

通过这期推文你首先会学会如何在服务器端使用jupyter编程,比你用其他的编译器(例如PyCharm、VS)会更加的清晰,对新手也更友好。

接着我会介绍如何进行数据预处理,以及你应该如何准备自己的数据;随后我会介绍如何对WSI进行分割并切成patches;最后,我会讲解如何利用切片级的标签进行特征提取。

注意,我这篇推文的数据只用了两张切片,前面这些步骤是没有影响的,如果想要进行后面的步骤,两张切片是不够的,因为要划分训练集、验证集和测试集。

这篇推文是所有后续项目复现的基础,一定要掌握这个流程。


如果想了解文献具体讲了什么内容,可以移步我的另一篇推文

CLAM:病理AI发展里程碑,建议每一个研究病理AI的人都了解的文章|24-08-16


模型概述

CLAM

### 关于CLAM复现步骤 #### 安装依赖环境 为了成功复现CLAM,首先需要搭建合适的开发环境。这通常涉及Python版本的选择以及必要的库安装。推荐使用Anaconda来管理虚拟环境和包依赖关系[^1]。 ```bash # 创建并激活个新的Conda环境 conda create -n clam_env python=3.7 conda activate clam_env # 安装所需的Python库 pip install numpy pandas scikit-learn torch torchvision matplotlib h5py ``` #### 数据准备 CLAM框架主要用于处理全切片图像(Whole Slide Images, WSI),因此数据集的准备工作至关重要。以CAMELYON16为例,在完成下载后需提取特征向量作为模型输入[^3]。 在`CLAM-master`目录下创建名为`FEATURES_DIRECTORY`的新文件夹,并在其内部进步构建子文件夹`tumor_vs_normal_resnet_features`用于存储预计算好的ResNet特征表示: ```plaintext CLAM-master/ ├── FEATURES_DIRECTORY/ │ └── tumor_vs_normal_resnet_features/ └── ... ``` #### 配置参数与训练模型 调整配置文件中的各项超参设定值以便适配特定任务需求。通过命令行界面启动实验脚本执行端到端流程包括但不限于滑动窗口采样、注意力机制学习过程等核心环节[^2]。 ```python from pathlib import Path features_dir = Path('FEATURES_DIRECTORY/tumor_vs_normal_resnet_features') train_data_path = features_dir / 'train' val_data_path = features_dir / 'val' # 假设已定义好其他必要变量如model_type, bag_loss等... command_template = f'python main.py --data_root {str(features_dir)} \ --results_dir results --split_dir splits/camelyon_splits \ --model_size small --model_type {model_type} --bag_loss {bag_loss}' print(command_template) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值