NumPy数据存储与函数

数据可视化

NumPy 入门

数据的CSV文件存储

CSV (Comma-Separated Value, 逗号分隔值)

CSV是一种常见的文件格式,用来存储批量数据

np.savetxt(frame, array, fmt='%.18e', delimiter=None)
  • frame : 文件、字符串或产生器,可以是.gz或.bz2的压缩文件
  • array : 存入文件的数组
  • fmt : 写入文件的格式,例如:%d %.2f %.18e
  • delimiter : 分割字符串,默认是任何空格

image-20211019122525290

image-20211019122534967

np.loadtxt(frame, dtype=np.float, delimiter=None, unpack=False)
  • frame : 文件、字符串或产生器,可以是.gz或.bz2的压缩文件
  • dtype : 数据类型,可选
  • delimiter : 分割字符串,默认是任何空格
  • unpack : 如果True,读入属性将分别写入不同变量

image-20211019123242028

局限性:

CSV只能有效存储一维和二维数组

np.savetxt() np.loadtxt()只能有效存取一维和二维数组

多维数据的存取

a.tofile(frame, sep='', format='%s')
  • frame : 文件、字符串
  • sep : 数据分割字符串,如果是空串,写入文件为二进制
  • format : 写入数据的格式

image-20211019124045872

image-20211019124058664

np.fromfile(frame, dtype=float, count=1, sep='')
  • frame : 文件、字符串
  • dtype : 读取的数据类型
  • count : 读入元素个数,‐1表示读入整个文件
  • sep : 数据分割字符串,如果是空串,写入文件为二进制

image-20211019124232986

image-20211019124258874

注意:

该方法需要读取时知道存入文件时数组的维度和元素类型

a.tofile() 和np.fromfile()需要配合使用

可以通过元数据文件来存储额外信息

NumPy的便捷文件存取
np.save(fname, array) 或 np.savez(fname, array)
  • fname : 文件名,以.npy为扩展名,压缩扩展名为.npz
  • array : 数组变量
np.load(fname)
  • fname : 文件名,以.npy为扩展名,压缩扩展名为.npz

image-20211019124546992

NumPy的随机数函数

NumPy的随机数函数子库
NumPy的random子库

np.random.*

函数说明
rand(d0,d1,…,dn)根据d0‐dn创建随机数数组,浮点数,[0,1),均匀分布
randn(d0,d1,…,dn)根据d0‐dn创建随机数数组,标准正态分布
randint(low[,high,shape])根据shape创建随机整数或整数数组,范围是[low, high)
seed(s)随机数种子,s是给定的种子值
shuffle(a)根据数组a的第1轴进行随排列,改变数组x
permutation(a)根据数组a的第1轴产生一个新的乱序数组,不改变数组x
choice(a[,size,replace,p])从一维数组a中以概率p抽取元素,形成size形状新数组 replace表示是否可以重用元素,默认为False
uniform(low,high,size)产生具有均匀分布的数组,low起始值,high结束值,size形状
normal(loc,scale,size)产生具有正态分布的数组,loc均值,scale标准差,size形状
poisson(lam,size)产生具有泊松分布的数组,lam随机事件发生率,size形状

image-20211019135207233

image-20211019135403109

image-20211019135503388

image-20211019135624107

NumPy的统计函数

函数说明
sum(a, axis=None)根据给定轴axis计算数组a相关元素之和,axis整数或元组
mean(a, axis=None)根据给定轴axis计算数组a相关元素的期望,axis整数或元组
average(a,axis=None,weights=None)根据给定轴axis计算数组a相关元素的加权平均值
std(a, axis=None)根据给定轴axis计算数组a相关元素的标准差
var(a, axis=None)根据给定轴axis计算数组a相关元素的方差
min(a) max(a)计算数组a中元素的最小值、最大值
argmin(a) argmax(a)计算数组a中元素最小值、最大值的降一维后下标
unravel_index(index, shape)根据shape将一维下标index转换成多维下标
ptp(a)计算数组a中元素最大值与最小值的差
median(a)计算数组a中元素的中位数(中值)

image-20211019135949068

image-20211019140129662

NumPy的梯度函数

函数说明
np.gradient(f)计算数组f中元素的梯度,当f为多维时,返回每个维度梯度

梯度:连续值之间的变化率,即斜率

XY坐标轴连续三个X坐标对应的Y轴值:a, b, c,其中,b的梯度是: (c‐a)/2

image-20211019140515217

image-20211019140523439

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值