程序员的自我修养之数学基础04:特殊矩阵(零矩阵、单位矩阵、对角矩阵、逆矩阵、转置矩阵、对称矩阵)

本文详细介绍了特殊矩阵,包括零矩阵、单位矩阵、对角矩阵、逆矩阵和转置矩阵的概念和性质。重点讲解了这些矩阵在映射和线性代数中的作用,如零矩阵表示原点映射,单位矩阵保持向量不变,对角矩阵表示轴向伸缩,逆矩阵提供反向映射,转置矩阵则涉及行列互换。同时,文章提及对称矩阵的定义及其特性,强调对称矩阵在数学和编程中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

零矩阵

零矩阵就是所有元素都是0的矩阵,一般记做O。可以在后面加 m,n 表示其规模。

在前一章,我们讲到,矩阵就是映射。零矩阵,就表示了将所有的点都映到原点的映射。

因此,对于任意向量 x,都有 Ox = o。对于任意矩阵 A,都有:

  • A + O = O + A = A

  • AO = OA = O

  • 0A = O

单位矩阵

在一个方阵中,如果从左上到右下的对角元素均为1,其余元素均为0,那么该矩阵被称为单位矩阵,常用 I 表示,用In来表示n阶单位矩阵。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值