基于Pytorch搭建深度学习模型

1.CNN模型

  卷积神经网络(CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。它主要包括卷积层和池化层。卷积神经网络在本质上是一种输入到输出的映射,它能够学习大量的输入与输出之间的映射关系,而不需要任何输入和输出之间的精确的数学表达式,只要用已知的模式对卷积网络加以训练,网络就具有输入输出之间的映射能力。现在常用的卷积神经网络主要由LeNet,Vgg,ResNet,GAN 等。

参数 说明
nn.Conv2d 输入通道,输出通道,卷积核大小,步长,填充 二维卷积
nn.ReLU ReLU激活函数
nn.MaxPool2d 池化大小,步长 二维池化
nn.Linear 输入特征,输出特征,偏置(默认True) 全连接层
import torch
import torch.nn as nn
import torch.nn.functional as F

class CNNModel(nn.Module):
    def __init__(self):
        super(CNNModel, self).__init__()
        #conv1第一层
        self.cnnCRM1 = nn.Sequential(
            nn.Conv2d(in_channels = 1, out_channels = 8,kernel_size = 3,
                      stride = 1,padding = 1),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size = 2,stride = 2)
        )
        #conv2第二层
        self.cnnCRM2 = nn.Sequential(
            nn.Conv2d(
                in_channels = 8, out_channels = 16,kernel_size = 3,
                stride = 1,padding = 1),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size = 2,stride = 2)
        )
        #fully connected 全连接
        self.fc1 = nn.Sequential(nn.Linear(784, 64))
        self.fc2 = nn.Sequential(nn.Linear(64, 
  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Python基于PyTorch深度学习的图像识别可以通过搭建一个卷积神经网络(Convolutional Neural Network,CNN)来实现。以下是一个简单的实现步骤: 1. 准备数据集:收集有标签的图像数据集,并将其拆分为训练集和测试集。 2. 定义网络模型:使用PyTorch定义卷积神经网络模型,包括卷积层、池化层和全连接层。 3. 训练模型:使用训练集对模型进行训练,通过反向传播算法来更新模型的权重。 4. 测试模型:使用测试集对模型进行测试,计算模型的准确率和误差。 5. 优化模型:根据测试结果对模型进行调整和优化,例如增加或减少网络层数、调整学习率等。 以下是一个简单的示例代码,展示了如何使用PyTorch实现一个基于CNN的图像分类器: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms # 定义CNN网络模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(torch.relu(self.conv1(x))) x = self.pool(torch.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) x = self.fc3(x) return x # 载入数据集 transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') # 定义损失函数和优化器 net = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) # 训练网络模型 for epoch in range(2): # 遍历数据集两次 running_loss = 0.0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() if i % 2000 == 1999: # 每2000个小批量数据打印一次损失值 print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 print('Finished Training') # 测试网络模型 correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % ( 100 * correct / total)) ``` 在这个示例代码中,我们构建了一个带有两个卷积层和三个全连接层的CNN模型,并使用CIFAR10数据集进行训练和测试。训练过程中使用了随机梯度下降(SGD)优化器和交叉熵损失函数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值