题目大意
给定一个连通图,要求你给他们的边赋值,所有边的MEX(u, v)的最大值最小
me(u, v)是u->v的边上的没有出现过的最小整数
样例
inputCopy
6
1 2
1 3
2 4
2 5
5 6
outputCopy
0
3
2
4
1
MEX(1, 6)=2; MEX(1, 3)=0; MEX(1, 4) = 1.
思路
先将叶子结点的边从0依次赋值,然后,再赋值不是叶子结点的边
这样就可以满足任意两条边都存在不大于总边数的权值,
在极限情况下,当图是一条线的时候,最大值mex是边数加一
代码
#include <iostream>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 200010;
int deg[N], a[N], b[N];
int n, m;
int main()
{
scanf("%d", &n);
for (int i = 1; i < n; i++)
{
scanf("%d%d", &a[i], &b[i]);
deg[a[i]]++;
deg[b[i]]++;
}
int cnt = 0;
for (int i = 1; i <= n; i++)
if (deg[a[i]] == 1 || deg[b[i]] == 1)
cnt++;
int c = 0;
for(int i = 1; i < n; i++)
{
if(deg[a[i]] == 1 || deg[b[i]] == 1)
printf("%d\n", c++);
else printf("%d\n", cnt++);
}
return 0;
}