一,介绍
积分的简介
积分是一种添加切片以找到整体的方法。积分可用于查找区域、体积、中心点和许多有用的东西。但是,最简单的方法是从找到函数和 x 轴之间的区域开始,如下所示:
1.面积是什么?是片
我们可以在几个点上计算函数,并像这样将宽度 Δx 的切片相加(但答案不是很准确):
我们可以使 Δx 小得多,并添加许多小切片(答案越来越好):
当切片的宽度接近于零时,答案就接近真正的答案。我们现在将 dx 写为表示 Δx 切片的宽度接近于零。
这就是积分的基本概念。
接下来用manim实现一下改内容
二,get_riemann_rectangles()
是 Manim 中用于生成 Riemann 矩形图的函数
get_riemann_rectangles(graph, x_range=None, dx=0.1, input_sample_type='left',
stroke_width=1, stroke_color=ManimColor('#000000'), fill_opacity=1, color=
(ManimColor('#58C4DD'), ManimColor('#83C167')), show_signed_area=True,
bounded_graph=None, blend=False, width_scale_factor=1.001)
get_riemann_rectangles()
是 Manim 中用于生成 Riemann 矩形图的函数,通常用于教学或可视化数学概念,如积分、面积的计算等。以下是对该函数及其参数的详细解释:
函数功能
该函数生成一组矩形,表示在给定的曲线下的 Riemann 积分近似。矩形的高度由曲线在指定范围内的值决定,宽度由 dx
参数确定。
参数解释
-
graph:
- 描述要绘制