题目
给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
例如,给定如下二叉树: root = [3,5,1,6,2,0,8,null,null,7,4]
示例
示例 1:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
输出: 3
解释: 节点 5 和节点 1 的最近公共祖先是节点 3。
示例 2:
输入: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
输出: 5
解释: 节点 5 和节点 4 的最近公共祖先是节点 5。因为根据定义最近公共祖先节点可以为节点本身。
说明
所有节点的值都是唯一的。
p、q 为不同节点且均存在于给定的二叉树中
想法
首先,总体上使用迭代的方法,我们考虑一些特殊情况,当树为空时,我们直接返回NULL,或者p和q有一个等于根,所以另一个一定在其之下,所以可以直解返回这个和根相同的.
如果p和q都在一边的话,我们可以直接深入到他们都在的那颗子树上接着进行计算,如果p和q在不同的两边的话,我们直接返回root.
代码实现
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(root == NULL)
return NULL;
if(root == p || root == q)
return root;
TreeNode* left = lowestCommonAncestor(root->left, p, q);
TreeNode* right = lowestCommonAncestor(root->right, p, q);
if(left == NULL)
return right;
if(right == NULL)
return left;
if(left && right)
return root;
return NULL;
}
};