轴承的结构参数以及特征频率的计算

1. 轴承结构参数

下图给出了常见轴承的结构参数。需要注意是,图中的命名符号以及标注仅做直观认识,不作为标准规范指导。

在这里插入图片描述

符号说明:

  • d d d:滚子直径
  • d / 2 d/2 d/2:滚子半径
  • α \alpha α:接触角 (°)
  • 2 r 1 2r_1 2r1:内滚道直径
  • D D D:轴承节径(滚动体中心所在的圆的直径)
  • 2 r 2 2r_2 2r2:外滚道直径
  • 2 r 2r 2r:内径(孔径)
  • D 1 D_1 D1:外圈挡边直径
  • H H H:外径
  • B B B:轴承宽度
  • Z Z Z:滚珠个数

节径 D D D计算公式:

D = 2 r 1 + 2 r 2 2 = 2 r 1 + d D=\frac{2r_1+2r_2}{2}=2r_1+d D=22r1+2r2=2r1+d

2. 轴承特征频率计算

内圈转频 f r f_r fr

假定外圈固定,内圈旋转,其中 N N N是转轴的转速,单位r/min,则内圈的转频计算公式如下:
f r = N 60 f_r=\frac{N}{60} fr=60N

内圈故障特征频率 f i f_i fi

Z Z Z个滚动体在内圈上的某一个固定点的通过频率:

f i = Z 2 ( 1 + d D cos ⁡ α ) f r f_i=\frac{Z}{2}(1+\frac{d}{D}\cos\alpha) f_r fi=2Z(1+Ddcosα)fr

外圈故障特征频率 f o f_o fo

Z Z Z个滚动体在外圈上的某一个固定点的通过频率:

f o = Z 2 ( 1 − d D cos ⁡ α ) f r f_o=\frac{Z}{2}(1 - \frac{d}{D}\cos\alpha) f_r fo=2Z(1Ddcosα)fr

滚动体故障特征频率 f b f_b fb

滚动体上的某一固定点在内圈或外圈或保持架通过频率(或滚动体自传频率):

f b = D 2 d [ 1 − ( d D ) 2 cos ⁡ 2 α ] f r f_b=\frac{D}{2d}[1 - (\frac{d}{D})^2\cos^2\alpha] f_r fb=2dD[1(Dd)2cos2α]fr

保持架故障特征频率 f c f_c fc

保持架的旋转频率(或滚动体的公转频率):

f c = 1 2 ( 1 − d D cos ⁡ α ) f r f_c=\frac{1}{2}(1 - \frac{d}{D}\cos\alpha) f_r fc=21(1Ddcosα)fr

以上, d d d滚子直径, D D D节径, α \alpha α接触角, Z Z Z滚子的个数, f r f_r fr转轴的转频(内圈转频)。

3. 案例与代码

以SKF NU 312 ECM圆柱滚子轴承为例,转速为1500rpm,结构如下:

在这里插入图片描述

在三维模型中测得的几个重要参数如下:

滚子个数 Z Z Z滚子直径 d d d内滚道直径外滚道直径节径 D D D接触角 α \alpha α
131977115960

计算代码:

import numpy as np

def bearing_freq(z=13, d=19, D=46.4, alpha=0, n=2500):
    """
    计算滚动轴承的故障特征频率
    :param z: The number of roller element, integer  (滚子个数)
    :param d: roller element diameter, float(mm)     (滚子直径)
    :param D: pitch diameter of bearing, float(mm)   (节径)
    :param alpha: contact angle, float(°)            (接触角)
    :param n: rotational speed, float(r/min)         (转轴的转速)
    eg:
        西储大学轴承参数:z=9, d=7.9400, D=39.0398, alpha=0, n=1797
    """

    # 内圈转频
    fr = n / 60
    # 内圈通过频率(内圈故障特征频率)
    fi = z*(1/2)*(1+d/D*np.math.cos(alpha)) * fr
    # 外圈通过频率(外圈圈故障特征频率)
    fo = z*(1/2)*(1-(d/D)*np.math.cos(alpha)) * fr
    # 滚动体自传频率(滚动体绕自身轴线转动)
    fba = D*(1/(2*d))*(1-np.square(d/D*np.math.cos(alpha))) * fr
    # 滚动体上的某一固定点在内圈或外圈或保持架通过频率(滚动体故障特征频率)
    fb = 2 * fba
    # 保持架旋转频率(保持架故障特征频率)
    fc = (1/2)*(1-(d/D)*np.math.cos(alpha)) * fr
    # 滚动体公转频率
    fbr = fc

    return fr, fc, fba, fbr, fi, fo, fb

if __name__ == "__main__":
    fr, fc, fba, fbr, fi, fo, fb = bearing_freq(z=13, d=19, D=48*2, alpha=0, n=1500)
    print('内圈转频fr: %.2f' % fr)
    print('内圈故障特征(通过)频率fi: %.2f' % fi)
    print('外圈故障特征(通过)频率fo: %.2f'%  fo)
    print('滚动体故障特征(通过)频率fb (fb=2*fba): %.2f' %  fb)
    print('保持架故障特征(转动)频率fc: %.2f' %  fc, '\n')
    print('滚动体公转频率fbr: %.2f' % fbr)
    print('滚动体自传频率fba: %.2f' % fba)

结果:

内圈转频fr: 25.00
内圈故障特征(通过)频率fi: 194.66
外圈故障特征(通过)频率fo: 130.34
滚动体故障特征(通过)频率fb (fb=2*fba): 121.37
保持架故障特征(转动)频率fc: 10.03 

滚动体公转频率fbr: 10.03
滚动体自传频率fba: 60.68

验证:
在这里插入图片描述

参考资料

[1] 《滚动轴承故障诊断实用技术》,杨国安.

[2] SKF NU 312 ECM - 圆柱滚子轴承.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值