目录
1. 轴承结构参数
下图给出了常见轴承的结构参数。需要注意是,图中的命名符号以及标注仅做直观认识,不作为标准规范指导。
符号说明:
- d d d:滚子直径
- d / 2 d/2 d/2:滚子半径
- α \alpha α:接触角 (°)
- 2 r 1 2r_1 2r1:内滚道直径
- D D D:轴承节径(滚动体中心所在的圆的直径)
- 2 r 2 2r_2 2r2:外滚道直径
- 2 r 2r 2r:内径(孔径)
- D 1 D_1 D1:外圈挡边直径
- H H H:外径
- B B B:轴承宽度
- Z Z Z:滚珠个数
节径 D D D计算公式:
D = 2 r 1 + 2 r 2 2 = 2 r 1 + d D=\frac{2r_1+2r_2}{2}=2r_1+d D=22r1+2r2=2r1+d
2. 轴承特征频率计算
内圈转频 f r f_r fr
假定外圈固定,内圈旋转,其中
N
N
N是转轴的转速,单位r/min,则内圈的转频计算公式如下:
f
r
=
N
60
f_r=\frac{N}{60}
fr=60N
内圈故障特征频率 f i f_i fi
Z Z Z个滚动体在内圈上的某一个固定点的通过频率:
f i = Z 2 ( 1 + d D cos α ) f r f_i=\frac{Z}{2}(1+\frac{d}{D}\cos\alpha) f_r fi=2Z(1+Ddcosα)fr
外圈故障特征频率 f o f_o fo
Z Z Z个滚动体在外圈上的某一个固定点的通过频率:
f o = Z 2 ( 1 − d D cos α ) f r f_o=\frac{Z}{2}(1 - \frac{d}{D}\cos\alpha) f_r fo=2Z(1−Ddcosα)fr
滚动体故障特征频率 f b f_b fb
滚动体上的某一固定点在内圈或外圈或保持架通过频率(或滚动体自传频率):
f b = D 2 d [ 1 − ( d D ) 2 cos 2 α ] f r f_b=\frac{D}{2d}[1 - (\frac{d}{D})^2\cos^2\alpha] f_r fb=2dD[1−(Dd)2cos2α]fr
保持架故障特征频率 f c f_c fc
保持架的旋转频率(或滚动体的公转频率):
f c = 1 2 ( 1 − d D cos α ) f r f_c=\frac{1}{2}(1 - \frac{d}{D}\cos\alpha) f_r fc=21(1−Ddcosα)fr
以上, d d d滚子直径, D D D节径, α \alpha α接触角, Z Z Z滚子的个数, f r f_r fr转轴的转频(内圈转频)。
3. 案例与代码
以SKF NU 312 ECM圆柱滚子轴承为例,转速为1500rpm,结构如下:
在三维模型中测得的几个重要参数如下:
滚子个数 Z Z Z | 滚子直径 d d d | 内滚道直径 | 外滚道直径 | 节径 D D D | 接触角 α \alpha α |
---|---|---|---|---|---|
13 | 19 | 77 | 115 | 96 | 0 |
计算代码:
import numpy as np
def bearing_freq(z=13, d=19, D=46.4, alpha=0, n=2500):
"""
计算滚动轴承的故障特征频率
:param z: The number of roller element, integer (滚子个数)
:param d: roller element diameter, float(mm) (滚子直径)
:param D: pitch diameter of bearing, float(mm) (节径)
:param alpha: contact angle, float(°) (接触角)
:param n: rotational speed, float(r/min) (转轴的转速)
eg:
西储大学轴承参数:z=9, d=7.9400, D=39.0398, alpha=0, n=1797
"""
# 内圈转频
fr = n / 60
# 内圈通过频率(内圈故障特征频率)
fi = z*(1/2)*(1+d/D*np.math.cos(alpha)) * fr
# 外圈通过频率(外圈圈故障特征频率)
fo = z*(1/2)*(1-(d/D)*np.math.cos(alpha)) * fr
# 滚动体自传频率(滚动体绕自身轴线转动)
fba = D*(1/(2*d))*(1-np.square(d/D*np.math.cos(alpha))) * fr
# 滚动体上的某一固定点在内圈或外圈或保持架通过频率(滚动体故障特征频率)
fb = 2 * fba
# 保持架旋转频率(保持架故障特征频率)
fc = (1/2)*(1-(d/D)*np.math.cos(alpha)) * fr
# 滚动体公转频率
fbr = fc
return fr, fc, fba, fbr, fi, fo, fb
if __name__ == "__main__":
fr, fc, fba, fbr, fi, fo, fb = bearing_freq(z=13, d=19, D=48*2, alpha=0, n=1500)
print('内圈转频fr: %.2f' % fr)
print('内圈故障特征(通过)频率fi: %.2f' % fi)
print('外圈故障特征(通过)频率fo: %.2f'% fo)
print('滚动体故障特征(通过)频率fb (fb=2*fba): %.2f' % fb)
print('保持架故障特征(转动)频率fc: %.2f' % fc, '\n')
print('滚动体公转频率fbr: %.2f' % fbr)
print('滚动体自传频率fba: %.2f' % fba)
结果:
内圈转频fr: 25.00
内圈故障特征(通过)频率fi: 194.66
外圈故障特征(通过)频率fo: 130.34
滚动体故障特征(通过)频率fb (fb=2*fba): 121.37
保持架故障特征(转动)频率fc: 10.03
滚动体公转频率fbr: 10.03
滚动体自传频率fba: 60.68
验证:
参考资料
[1] 《滚动轴承故障诊断实用技术》,杨国安.
[2] SKF NU 312 ECM - 圆柱滚子轴承.