什么是信号的直流分量?

1. 什么是信号的直流分量(DC component )?

从时域角度,直流分量与时间无关,即不随时间变化而变化,是一个常量。如信号 x ( t ) x(t) x(t)中的成分 A 0 A_0 A0就是直流分量:
x ( t ) = A 0 + A s i n ( 2 π f t ) x(t)=A_0+Asin(2\pi ft) x(t)=A0+Asin(2πft)

从频域角度,直流分量就是频谱中频率为0时对应的值 [1]:

In a sense, the DC component is like the “zero frequency component”, since cos(2π ·0·t) = 1. We often think of offset in this way, and plot the DC offset at f = 0 in the frequency-domain representation. The DC component is often easy to eyeball—it’s equal to the average value of the signal over a period. For example, in the signal above, the DC offset is 0.5.

在这里插入图片描述

2. 为什么在频谱分析时要去除直流分量?

在频域中,横坐标频率f=0Hz对应的值就是直流分量,如果该值纵坐标过大,就会干扰对其他频率成分的观察,所以需要从信号中去除这个无用的0频率成分。

从第一个图可以看出,0频率的幅值很大,从而干扰对其他频率幅值的分析。第二个图是去除直流分量之后的频谱图,可以发现此时已经没有直流分量了。
在这里插入图片描述

3. 如何去除信号的直流分量

直流分量可以看做是一个周期内信号的均值,将原始信号减去信号的均值,即可去除直流分量。

x ^ ( t ) = x ( t ) − μ x \hat{x}(t)=x(t)-\mu_x x^(t)=x(t)μx

对于离散信号,其均值为 μ x = 1 N ∑ n = 0 N − 1 x [ n ] \mu_x=\frac{1}{N} \sum_{n=0}^{N-1} x[n] μx=N1n=0N1x[n];对于连续信号,其均值为 μ x = 1 t 2 − t 1 ∫ t 1 t 2 x ( t ) d t \mu_x=\frac{1}{t_2-t_1} \int_{t_1}^{t_2} x(t) d t μx=t2t11t1t2x(t)dt

FFT代码中,去除直流分量是非常必要的,一般会加一行代码。

4. 参考

[1] Signals and the frequency domain

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值