人工智能
文章平均质量分 90
Easonhe
这个作者很懒,什么都没留下…
展开
-
【计算机视觉】图像轮廓与图像分割修复(凸包、图像的矩、分水岭算法、图像修补)
来源:《OpenCV3编程入门》,怀念毛星云大佬🕯️。原创 2024-03-08 09:51:08 · 1431 阅读 · 0 评论 -
【计算机视觉】图像变换方法(边缘检测算子、霍夫变换、重映射、放射变换与直方图均衡化)
霍夫变换(HoughTransform)是图像处理中的一种特征提取技术,该过程在一个参数空间中通过计算累计结果的局部最大值得到一个符合该特定形状的集合。作为霍夫变换结果。最初的Hough变换是设计用来检测直线和曲线的。起初的方法要求知道物体边界线的解析方程,但不需要有关区域位置的先验知识。这种方法的一个突出优点是分割结果的Robustness,即对数据的不完全或噪声不是非常敏感。然而,要获得描述边界的解析表达常常是不可能的。经典霍夫变换用来检测图像中的直线,后来霍夫变换扩展到任意形状物体的识别。原创 2024-03-07 16:33:56 · 1411 阅读 · 1 评论 -
【计算机视觉】图像处理算法(其他篇)
来源:《OpenCV3编程入门》,怀念毛星云大佬🕯️。原创 2024-03-07 10:53:14 · 811 阅读 · 0 评论 -
【计算机视觉】图像处理算法(形态学滤波篇)
来源:《OpenCV3编程入门》,怀念毛星云大佬🕯️。原创 2024-03-07 10:00:07 · 2397 阅读 · 0 评论 -
【计算机视觉】图像处理算法(线性滤波篇)
线性滤波器经常用于剔除输入信号中不想要的频率或者从许多频率中选择一个想要的频率。低通滤波器:允许低频率通过;高通滤波器:允许高频率通过;带通滤波器:允许一定范围频率通过;带阻滤波器:阻止一定范围频率通过并且允许其他频率通过;全通滤波器:允许所有频率通过,仅仅改变相位关系;陷波滤波器(Band-StopFilter) : 阻止一个狭窄频率范围通过,是一种特殊带阻滤波器。原创 2024-03-07 09:15:47 · 2072 阅读 · 0 评论 -
【计算机视觉】OpenCV3编程入门-笔记(一)
OpenCV的全称是Open Source Computer Vision Library,直译就是“开源计算机视觉库”。它采用优化的C/C++代码编写。原创 2024-03-02 11:58:36 · 1255 阅读 · 0 评论 -
【笔记】深度学习入门:基于Python的理论与实现(六)
深度学习是加深了层的深度神经网络。原创 2024-02-28 17:33:25 · 1089 阅读 · 0 评论 -
【笔记】深度学习入门:基于Python的理论与实现(五)
卷积神经网络(Convolutional Neural Network,CNN)原创 2024-02-28 16:09:21 · 908 阅读 · 0 评论 -
【笔记】深度学习入门:基于Python的理论与实现(四)
本章主题涉及寻找最优权重参数的最优化方法、权重参数的初始值、超参数的设定方法等。此外,为了应对过拟合,本章还将介绍权值衰减、Dropout 等正则化方法,并进行实现。最后将对近年来众多研究中使用的Batch Normalization方法进行简单的介绍。原创 2024-02-28 14:06:55 · 931 阅读 · 0 评论 -
【笔记】深度学习入门:基于Python的理论与实现(三)
一 个能够高效计算权重参数的梯度的方法。原创 2024-02-27 15:17:22 · 945 阅读 · 0 评论 -
【笔记】深度学习入门:基于Python的理论与实现(二)
机器学习中,一般将数据分为训练数据和测试数据两部分来进行学习和 实验等。首先,使用训练数据进行学习,寻找最优的参数;然后,使用测试 数据评价训练得到的模型的实际能力。为了正确评价模型的泛化能力(指处理未被观察过的数据),就必须划分训练数据和测试数据。另外,训练数据也可以称为监督数据。只对某个数据集过度拟合的状态称为过拟合(over fitting)。避免过拟合也是机器学习的一个重要课题。原创 2024-02-22 17:36:23 · 1062 阅读 · 0 评论 -
【笔记】深度学习入门:基于Python的理论与实现(一)
图是一个接收两个输入信号的感知机的例子。x1、x2 是输入信号, y 是输出信号,w1、w2 是权重(若 b 为 −0.1,则只要输入信号的加权总和超过 0.1,神经元就会被激活。但是如果 b 为 −20.0,则输入信号的加权总和必须超过 20.0,神经元才会被激活。像这样, 偏置的值决定了神经元被激活的容易程度)。图中的○称为“神 经元”或者“节点”。输入信号被送往神经元时,会被分别乘以固定的权重神经元会计算传送过来的信号的总和,只有当这个总和超过 了某个界限值时,才会输出1。原创 2024-02-22 15:49:57 · 1130 阅读 · 0 评论