Codeforces Round #713 (Div. 3) F. Education

题目传送门

题意:

有n个职位,在不同的职位能赚不同的钱;职位越高,工资越高(至少相等);升职需要一定的钱(可以理解为手续费),且升职当天没有工资(消耗一天);如果要凑够总数为c的钱,至少需要多少天(工资是日薪)

分析:

有点像背包问题?或者像是 2 ^ n 的枚举?

但都不是!!!

首先,要明白一点:如果要升职,早升职比晚升职好,因为手续费都是要交的,早升职,就能更早地享受高工资,那么就能更快凑够c(贪心)

其次,如果不升职,因为不能跳级,那么就一直以当前职位继续下去,就不会有那么多种情况了

因此,本题表面上是O(2^n)的枚举,其实只是O(n)的复杂度。因为不升职就没有后续!

综上,对于每个职位,考虑两种情况:升职和不升职

不升职,直接可以计算出天数

升职,只需要一级级地计算,最后累加起来即可

思想图解:

 

代码(建议递归写法,更清晰):

// a为每个职位地日薪,b为当前职位升职所需要地手续费
int a[N], b[N];
 
int n, c;

//ans为最少地天数
LL ans = INF;
 
//递归函数(pos为当前职位,days为当前已经花了多少天,money是已经赚的钱)
//天数要开long long,不然会溢出
void dfs(int pos, LL days, int money){
	//钱已经够了,就不需要后面的计算了
    if(money >= c) return;
	
    //不升职的情况(注意上取整)
	LL temp = ceil(1.0 * (c - money) / a[pos]);
	ans = min(ans, days + temp);
	

    //如果pos == n了,那么就没有升职空间了,只能不升职,无法执行后面的升职情况
	if(pos == n) return; 
	
    //升职
    //如果现在的钱不够手续费,先在本职位赚够手续费
	if(money < b[pos]){
        //同样要上取整
		temp = ceil(1.0 * (b[pos] - money) / a[pos]);
		days += temp;
		money += temp * a[pos];
	}

    //升职(升职当天没有工资,消耗天数+1)
	days++;
    //交手续费
	money -= b[pos];
    //处理下一个职位
	dfs(pos + 1, days, money);
}
 
int main(){
	int T;
	scanf("%d", &T);
	
	while(T--){
		scanf("%d%d", &n, &c);
		for(int i = 1; i <= n; i++) scanf("%d", &a[i]);
		for(int i = 1; i <= n - 1; i++) scanf("%d", &b[i]);
		
        //每次循环,都要先把ans赋值为INF
		ans = INF;
        //从第一个职位开始,初始days和money都是0
		dfs(1, 0, 0);
		printf("%lld\n", ans);
	}
 
	
	return 0;
}

非递归版(循环实现):

// 和递归版的思想一样的,只是写法不同而已
int a[N], b[N];
 
int main(){
	int T;
	scanf("%d", &T);
	
	while(T--){
		int n, c;	
		scanf("%d%d", &n, &c);
		for(int i = 1; i <= n; i++) scanf("%d", &a[i]);
		for(int i = 1; i <= n - 1; i++) scanf("%d", &b[i]);
		
		LL lastT = 0, lastM = 0;
		LL ans = INF;
		for(int i = 1; i <= n; i++){
			int tempT = ceil(1.0 * (c - lastM) / a[i]);
			LL nowT = lastT + tempT;
			ans = min(ans, nowT);
			
			tempT = 0;
			if(lastM < b[i]) tempT = ceil(1.0 * (b[i] - lastM) / a[i]);
			
			lastT += tempT;
			lastM += tempT * a[i];
			
			lastT++;
			lastM -= b[i];
		}
		
		
		printf("%lld\n", ans);
	}
 
	
	return 0;
}

如果觉得不错,不妨给个👍啦!!!(逃~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值