题目描述
A reversible prime in any number system is a prime whose “reverse” in that number system is also a prime. For example in the decimal system 73 is a reversible prime because its reverse 37 is also a prime.
Now given any two positive integers N (<
1
0
5
10^5
105) and D (1<D≤10), you are supposed to tell if N is a reversible prime with radix D.
输入
The input file consists of several test cases. Each case occupies a line which contains two integers N and D. The input is finished by a negative N.
输出
For each test case, print in one line Yes if N is a reversible prime with radix D, or No if not.
思路
其实这道题不难,关键是看懂题目。就是一个素数转换成所给定的r进制后,对这个r进制的数进行翻转,转完之后所对应的数是不是也为素数。
代码
#include<iostream>
#include<cstdio>
#include<string.h>
#include<math.h>
using namespace std;
int IsPrime(int a)
{
if (a <= 1)
{
return 0;
}
for (int i = 2; i * i <= a; i++)
{
if (a % i == 0)
{
return 0;
}
}
return 1;
}
int main()
{
//char num[100];
while (1)
{
int r, n1, n2=0;
char num[100000] = { 0 };
scanf("%d %d", &n1, &r);
if (n1 < 0)
{
break;
}
if (IsPrime(n1))
{
int i = 0;
while (n1)
{
num[i] = n1 % r;
n1 /= r;
i++;
}
for (int j = 0; j < i; j++)
{
n2 += num[j] * pow(r, i-j-1);
}
if (IsPrime(n2))
{
printf("Yes\n");
}
else {
printf("No\n");
}
}
else {
printf("No\n");
}
}
return 0;
}