实现Linux服务器配置深度学习环境并跑代码完整步骤

本文详细指导如何在Linux服务器上配置Anaconda,创建Python 3.7虚拟环境,并安装PyTorch 1.7.1以支持CUDA 10.1。涵盖OpenCV安装及PyCharm远程连接,解决依赖问题,适合深度学习开发者快速上手。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实现Linux服务器配置深度学习环境并跑代码完整步骤

安装pytorch

cuda版本10.1,python3.7

第一步 安装anaconda创建虚拟环境

参考在服务器上搭建自己的python环境

1、下载安装包

使用清华镜像文件下载

wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-2021.05-Linux-x86_64.sh
2、安装
bash Anaconda3-2021.05-Linux-x86_64.sh
3、更新环境变量
source ~/.bashrc

前面就变成了(base)

4、创建虚拟环境
conda create -n tf37 python=3.7

这样就创建了名为tf37的python3.7的环境

5、使用虚拟环境

激活创建的虚拟环境:

conda activate tf37

就把环境由base变为了tf37。
返回base环境:

conda deactivate

查看当前所有环境:

conda env list

删除环境:

conda env remove -n tf37

第二步 查看cuda版本安装对应的pytorch

1、查看cuda版本
nvcc -V

在这里插入图片描述

nvidia-smi

在这里插入图片描述
这里用两种方式看到有两个不同版本的cuda,但是第一个10.1版本的才是正确的。

2、根据cuda版本去官网找对应的pytorch。

由于最新版本的pytorch不支持10.1版本的cuda,因此去找老版本pytorch以前版本
在这里插入图片描述
找到后,复制安装代码:

conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 -c pytorch
3、添加镜像源下载

由于官网下载比较慢
添加清华镜像源:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/

查看添加镜像源:

conda config --set show_channel_urls yes | cat ~/.condarc

显示:
在这里插入图片描述
添加成功!

注意:采用清华镜像源下载要删掉安装语句里的 -c pytorch,否则采用官网源下载。
在这里插入图片描述

4、测试是否安装成功

进入python环境

import torch
torch.cuda.is_available()

输出true即为成功,false不成功(可能是因为pytorch和cuda版本不匹配)
在这里插入图片描述

安装OpenCV

pip install opencv-python

在这里插入图片描述
安装成功!

Pycharm远程连接服务器跑代码

参考Pycharm远程连接服务器并运行代码

1、设置connection

在这里插入图片描述
在这里插入图片描述

2、设置Mappings

在这里插入图片描述

3、实现代码Ctrl+s自动上传

在这里插入图片描述
在这里插入图片描述

4、设置python编译器

在这里插入图片描述
在这里插入图片描述
出现提示后点move
在这里插入图片描述在这里插入图片描述
点finish即可!
这样代码就会在服务器上运行。

提示缺少XXmodule,安装依赖包

直接在interpreter里安装即可。

在这里插入图片描述


2022.3.16


### 如何在Linux系统上运行深度学习代码 #### 准备工作 为了确保能够在Linux服务器上顺利执行深度学习任务,前期准备工作至关重要。这包括但不限于安装必要的软件包和支持库。对于Python编程语言而言,在Linux环境中部署深度学习模型通常建议通过Anaconda来管理依赖关系和创建隔离的工作空间。 #### 安装Anaconda 使用清华大学开源软件镜像站提供的资源可以加速下载过程。具体命令如下所示: ```bash wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-2021.05-Linux-x86_64.sh ``` 接着按照提示完成Anaconda安装流程[^2]。 #### 配置环境变量 一旦成功安装Anaconda之后,则需将其路径添加到系统的环境变量当中以便于后续操作更加便捷高效。可以通过编辑`~/.bashrc`文件将下面这一行追加进去实现此目的: ```bash source ~/anaconda3/bin/activate ``` 保存更改后记得重新加载该配置文件使设置生效: ```bash source ~/.bashrc ``` #### 创建虚拟环境 考虑到不同项目可能涉及到版本兼容性等问题,因此推荐针对每一个新启动的任务都单独建立一个新的Conda虚拟环境来进行开发测试活动。例如要基于Python 3.9构建名为`python39`的新环境可参照下述指令集行事: ```bash conda create --name python39 python=3.9 ``` 激活刚刚创建出来的这个特定版本号下的解释器实例之前还需要先切换过去才行: ```bash conda activate python39 ``` 此时如果想要验证当前所处的状态是否正确无误的话,那么可以直接调用`which python`查看默认使用的二进制位置信息确认无疑是在预期范围之内即为/home/user_name/anaconda3/envs/python39/bin/python[^3]。 #### 编写与调试脚本 当一切准备就绪以后就可以着手编写具体的业务逻辑部分了。这里假设有一个简单的神经网络训练案例存放在本地计算机之中等待迁移至远程主机上面继续推进下去。利用SCP协议能够轻松达成传输目标;另外也可以考虑借助VSCode这类集成IDE工具直接连接SSH通道在线编码调整参数直至满意为止。 #### 执行程序 最后一步就是实际提交作业给计算节点处理啦。一般情况下只要简单输入类似这样的语句就能让整个工程起来: ```bash python your_script.py ``` 不过有时候出于性能优化考量或许会希望进一步指定GPU设备编号从而充分利用硬件加速特性提升效率效果更佳哦!
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值