TextRank论文阅读

TextRank算法是基于PageRank的一种文本处理方法,用于抽取关键信息。它将文本中的词、短语或句子作为顶点,通过共现关系或句子相关性构建图,并利用加权无向图进行迭代排序,直到收敛。该方法适用于文本摘要、关键词提取等任务,通过定义顶点和边的构建方式,以及调整阻尼系数,能够适应不同的文本分析需求。
摘要由CSDN通过智能技术生成

基本信息

先放出论文: TextRank论文 以及 PageRank论文

TextRankRada MihalceaPaul Tarau 基于谷歌的排序方法 PageRank 所提出。其中主要思想与PageRank相似,在文本中,使用词、短语、句子等基本元素(文中的 text unit)来作为图的 顶点(文中的vertices),使用这些元素的关系来作为(edge)的构造条件,将一篇文章构成一个(Graph),从而根据图中的各个顶点和各个边来研究基本元素之间的关系。

无向图(Undirected Graphs)

文中说传统的图算法一般都是有向图,但是在实际运用中也可以使用无向图,并给出了图1Figure1),说明无向图相比来说收敛得更快。
收敛曲线

图1 收敛曲线图

加权图(Weighted Graphs)

因为在网页浏览中,一般一篇文章没有几个链接去指向其他的链接,所以一般不使用加权图。但是在文本之间,各个基本元素之间,可能会存在不同词之间建立强联系,所以可以使用加权图来构建。定义权重的计算公式为:
W S ( V i ) = ( 1 − d ) + d × ∑ V j ∈ I n ( V i ) w j i ∑ V k ∈ O u t ( V

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值