大语言模型原理与工程实践:挖掘大语言模型潜能:有监督微调

在这里插入图片描述

大语言模型原理与工程实践:挖掘大语言模型潜能:有监督微调

关键词:大语言模型、有监督微调、迁移学习、细粒度任务适应、模型性能优化、数据集构建、超参数调优

文章目录

1. 背景介绍

大语言模型(Large Language Models,LLMs)已经成为自然语言处理(NLP)领域的重要突破。这些模型通过海量文本数据的预训练,获得了强大的语言理解和生成能力。然而,为了使这些通用模型在特定任务或领域中发挥最佳性能,我们需要进行进一步的优化。有监督微调(Supervised Fine-tuning)是一种有效的技术,可以将预训练模型的知识迁移到特定任务上,从而显著提升模型在目标任务上的表现。

本文将深入探讨大语言模型的有监督微调原理、技术细节和工程实践,旨在帮助读者充分挖掘大语言模型的潜能,实现模型在特定任务上的卓越表现。

2. 核心概念与联系

有监督微调是一种迁移学习技术,它利用预训练模型的知识,通过在特

  • 4
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

光剑书架上的书

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值