大语言模型原理与工程实践:挖掘大语言模型潜能:有监督微调
关键词:大语言模型、有监督微调、迁移学习、细粒度任务适应、模型性能优化、数据集构建、超参数调优
文章目录
- 大语言模型原理与工程实践:挖掘大语言模型潜能:有监督微调
- 大语言模型原理与工程实践:挖掘大语言模型潜能:有监督微调
- 大语言模型原理与工程实践:挖掘大语言模型潜能:有监督微调
1. 背景介绍
大语言模型(Large Language Models,LLMs)已经成为自然语言处理(NLP)领域的重要突破。这些模型通过海量文本数据的预训练,获得了强大的语言理解和生成能力。然而,为了使这些通用模型在特定任务或领域中发挥最佳性能,我们需要进行进一步的优化。有监督微调(Supervised Fine-tuning)是一种有效的技术,可以将预训练模型的知识迁移到特定任务上,从而显著提升模型在目标任务上的表现。
本文将深入探讨大语言模型的有监督微调原理、技术细节和工程实践,旨在帮助读者充分挖掘大语言模型的潜能,实现模型在特定任务上的卓越表现。
2. 核心概念与联系
有监督微调是一种迁移学习技术,它利用预训练模型的知识,通过在特