主要参考约瑟夫环——公式法(递推公式)
约瑟夫问题
约瑟夫问题是个著名的问题:N个人围成一圈,第一个人从1开始报数,报M的将被杀掉,下一个人接着从1开始报。如此反复,最后剩下一个,求最后的胜利者。
解决方案
普通解法
对于这个问题我们一般想到的解决方法就是用一个数组或者链表来模拟,每次向后遍历,到第M个数的时候就删掉当前的数,如此反复多次即可,复杂度是O(nm),这样的复杂度在数据量比较小的情况下还是可以解决的,但是一旦n和m的值很大就无法在短时间内计算出结果了。
公式法
约瑟夫环是一个经典的数学问题,我们不难发现这样的依次报数,似乎有规律可循。为了方便导出递推式,我们重新定义一下题目。
问题: N个人编号为1,2,……,N,依次报数,每报到M时,杀掉那个人,求最后胜利者的编号。
很明显下一个要杀死的人跟本次杀死的人之间是有一个关系的,也就相当于状态的转移,应该往动态规划或者递推公式方面考虑。
这边我们先把结论抛出了。之后带领大家一步一步的理解这个公式是什么来的。
递推公式:
f
(
N
,
M
)
=
(
f
(
N
−
1
,
M
)
+
M
)
%
N
f(N,M)=(f(N-1,M)+M)\%N
f(N,M)=(f(N−1,M)+M)%N
f(N,M)表示,N个人报数,每报到M时杀掉那个人,最终胜利者的编号
f(N-1,M)表示,N-1个人报数,每报到M时杀掉那个人,最终胜利者的编号
下面我们不用字母表示每一个人,而用数字。
1 、 2 、 3 、 4 、 5 、 6 、 7 、 8 、 9 、 10 、 11
表示11个人,他们先排成一排,假设每报到3的人被杀掉。
最终胜利者肯定只是一个人,但是在每一轮中他的编号是会改变的。
刚开始时,头一个人编号是1,从他开始报数,第一轮被杀掉的是编号3的人。
编号4的人从1开始重新报数,这时候我们可以认为编号4这个人是队伍的头。第二轮被杀掉的是编号6的人。
编号7的人开始重新报数,这时候我们可以认为编号7这个人是队伍的头。第三轮被杀掉的是编号9的人。
……
第九轮时,编号2的人开始重新报数,这时候我们可以认为编号2这个人是队伍的头。这轮被杀掉的是编号8的人。
下一个人还是编号为2的人,他从1开始报数,不幸的是他在这轮被杀掉了。
最后的胜利者是编号为7的人。
下图表示这一过程(先忽视绿色的一行)
先对这个图进行解释,最上面绿色的部分是各个人在当前轮中对应的位置下标。
对于报数的过程模拟主要看前三列,每一轮都是从0下标的人开始报数,
第一轮报数的人为1,2,3,3被杀死
第二轮报数的人为4,5,6,6被杀死
第三轮报数的人是7,8,9,9被杀死
…
第十一轮报数的人只有7,7被杀死。
将上面表格的每一行看成数组,这个公式描述的是:幸存者在这一轮的下标位置
f(1,3):只有1个人了,那个人就是获胜者(也就是7),他的下标位置是0
f
(
2
,
3
)
=
(
f
(
1
,
3
)
+
3
)
%
2
=
3
%
2
=
1
f(2,3)=(f(1,3)+3)\%2=3\%2=1
f(2,3)=(f(1,3)+3)%2=3%2=1:在有2个人的时候,胜利者(也就是7)的下标位置为1
f
(
3
,
3
)
=
(
f
(
2
,
3
)
+
3
)
%
3
=
4
%
3
=
1
f(3,3)=(f(2,3)+3)\%3=4\%3=1
f(3,3)=(f(2,3)+3)%3=4%3=1:在有3个人的时候,胜利者(也就是7)的下标位置为1
f
(
4
,
3
)
=
(
f
(
3
,
3
)
+
3
)
%
4
=
4
%
4
=
0
f(4,3)=(f(3,3)+3)\%4=4\%4=0
f(4,3)=(f(3,3)+3)%4=4%4=0:在有4个人的时候,胜利者(也就是7)的下标位置为0
……
f
(
11
,
3
)
=
6
f(11,3)=6
f(11,3)=6
下面将讲解怎么推导这个公式。
问题1: 假设我们已经知道11个人时,胜利者的下标位置为6。那下一轮10个人时,胜利者的下标位置为多少?
答: 其实吧,第一轮删掉编号为3的人后,从4开始报数,之后的人的下标都相当于往前面移动了3位,胜利者的下标也往前移动了3位,所以他的下标位置由6变成3。
问题2: 假设我们已经知道10个人时,胜利者的下标位置为3。那下一轮11个人时,胜利者的下标位置为多少?
答: 这可以看作是上一个问题的逆过程,大家都往后移动3位,所以
f
(
11
,
3
)
=
f
(
10
,
3
)
+
3
f(11,3)=f(10,3)+3
f(11,3)=f(10,3)+3。不过有可能数组会越界,所以最后模上当前人数的个数,
f
(
11
,
3
)
=
(
f
(
10
,
3
)
+
3
)
%
11
f(11,3)=(f(10,3)+3)\%11
f(11,3)=(f(10,3)+3)%11
问题3: 现在改为人数改为N,报到M时,把那个人杀掉,那么数组是怎么移动的?
答: 每杀掉一个人,下一个人成为头,相当于把数组向前移动M位。若已知N-1个人时,胜利者的下标位置位f ( N − 1 , M ) f(N-1,M)f(N−1,M),则N个人的时候,就是往后移动M为,(因为有可能数组越界,超过的部分会被接到头上,所以还要模N),即
f
(
N
,
M
)
=
(
f
(
N
−
1
,
M
)
+
M
)
%
n
f(N,M)=(f(N-1,M)+M)\%n
f(N,M)=(f(N−1,M)+M)%n
注:理解这个递推式的核心在于关注胜利者的下标位置是怎么变的。每杀掉一个人,其实就是把这个数组向前移动了M位。然后逆过来,就可以得到这个递推式。
因为求出的结果是数组中的下标,最终的编号还要加1
下面给出代码实现:
int Josephus_cir(int n,int m)
{
int p=0;
for(int i=2;i<=n;i++)
{
p=(p+m)%i;
}
return p+1;
}