Gym 101466 E - Text Editor KMP + 二分答案

10 篇文章 0 订阅
1 篇文章 0 订阅

题意:给你一个主串和模式串,找出模式串最大的前缀,使得其在主串中的出现次数大于等于n。

思路:
首先会想到KMP。但是如果直接拿模式串一位一位匹配是O(n2)的时间复杂度,肯定过不了。
我们发现模式串长度越长,越不容易满足要求。所以这里有个单调性,可以来二分。我们二分答案可能的长度,然后用这么长的前缀丢进KMP里面,看看能否满足,如果发现可以,就把长度调大一点,反之调小一点。时间复杂度O(nlogn)。
最后注意KMP用来计数时,每次匹配完不能直接j=0, i -= p.size(),因为这样会使得指针回溯使得算法退化。我们匹配完一个直接j = nxt[j]就行了(还是尽量选择前面最大匹配完的一部分接着匹配)。

AC代码:

#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include <queue>
#include<sstream>
#include <stack>
#include <set>
#include <bitset>
#include<vector>
#define FAST ios::sync_with_stdio(false)
#define abs(a) ((a)>=0?(a):-(a))
#define sz(x) ((int)(x).size())
#define all(x) (x).begin(),(x).end()
#define mem(a,b) memset(a,b,sizeof(a))
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define rep(i,a,n) for(int i=a;i<=n;++i)
#define per(i,n,a) for(int i=n;i>=a;--i)
#define endl '\n'
#define pb push_back
#define mp make_pair
#define fi first
#define se second
using namespace std;
typedef long long ll;
typedef pair<ll,ll> PII;
const int maxn = 1e5+200;
const int inf=0x3f3f3f3f;
const double eps = 1e-7;
const double pi=acos(-1.0);
const int mod = 1e9+7;
inline int lowbit(int x){return x&(-x);}
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){if(!b){d=a,x=1,y=0;}else{ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}}//x=(x%(b/d)+(b/d))%(b/d);
inline ll qpow(ll a,ll b,ll MOD=mod){ll res=1;a%=MOD;while(b>0){if(b&1)res=res*a%MOD;a=a*a%MOD;b>>=1;}return res;}
inline ll inv(ll x,ll p){return qpow(x,p-2,p);}
inline ll Jos(ll n,ll k,ll s=1){ll res=0;rep(i,1,n+1) res=(res+k)%i;return (res+s)%n;}
inline ll read(){ ll f = 1; ll x = 0;char ch = getchar();while(ch>'9'||ch<'0') {if(ch=='-') f=-1; ch = getchar();}while(ch>='0'&&ch<='9') x = (x<<3) + (x<<1) + ch - '0',  ch = getchar();return x*f; }
int dir[4][2] = { {1,0}, {-1,0},{0,1},{0,-1} };

int nxt[maxn];

void getnext(string p)
{
    mem(nxt,0);
    nxt[0] = -1;        //第一位设为-1
    int i = 0, j = -1;   //i指针用来遍历数组, j相当于最大公共前后缀长度
    while(i<(int)p.size())
    {
        if(j==-1||p[i]==p[j]) i++, j++, nxt[i] = j;     //看看前后缀是否相等
        else j = nxt[j];        // 不行的话往前回溯
    }
}

int KMP(string t, string p)
{
    int i = 0, j = 0;
    getnext(p);
    int cnt = 0;
    while(i<t.size())
    {
        if(j==p.size())
        {
             cnt++;
             j = nxt[j];
        }
        if(j==-1||t[i]==p[j]) i++, j++;     //相等继续
        else j = nxt[j];        // 失配后找到nxt[j]的位置继续匹配。
    }
    if(j==p.size()) cnt++;
    return cnt;
}


int main()
{
    string t, p;
    int n;
    getline(cin,t);
    getline(cin,p);
    cin>>n;
    int L = 1 , R = p.size();
    string res = "-1";
    while(L<=R)
    {
        int mid = (L+R)>>1;
        string tmp(p,0, mid);
        if(KMP(t,tmp)>=n) res = tmp, L = mid + 1;
        else R = mid - 1;
    }
    if(res=="-1") cout<<"IMPOSSIBLE"<<endl;
    else cout<<res<<endl;
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值