leetcode(63. 不同路径 II)

这篇博客讨论了一种动态规划方法来解决一个机器人在含有障碍物的网格中找到从左上角到右下角不同路径的问题。通过初始化边界条件并更新网格中的每个单元格,可以计算出到达终点的不同路径数。示例展示了如何处理包含障碍物的网格,并给出了相应的代码实现。
摘要由CSDN通过智能技术生成

原题链接

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:
3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:

  1. 向右 -> 向右 -> 向下 -> 向下
  2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

输入:obstacleGrid = [[0,1],[0,0]]
输出:1

题意:
62的加强版,依旧是动态规划即可

代码:

class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
    	//如果入口被堵住,则直接返回0即可
        if(obstacleGrid[0][0]==1){
            return 0;
        }
        //初始化边界条件
        for (int i = 0; i < obstacleGrid.length; i++) {
            if(obstacleGrid[i][0]==0){
                obstacleGrid[i][0] = 1;
            }else{
                while (i<obstacleGrid.length){
                    obstacleGrid[i++][0] = 0;
                }
            }
        }
        //初始化边界条件
        for (int i=1;i<obstacleGrid[0].length;i++){
            if(obstacleGrid[0][i]==0){
                obstacleGrid[0][i] = 1;
            }else{
                while (i<obstacleGrid[0].length){
                    obstacleGrid[0][i++] = 0;
                }
            }
        }
        //动态规划
        for(int i=1;i<obstacleGrid.length;i++){
            for (int j=1;j<obstacleGrid[0].length;j++){
                if(obstacleGrid[i][j]==1){
                    obstacleGrid[i][j]=0;
                }else{
                    obstacleGrid[i][j] = obstacleGrid[i][j-1]+obstacleGrid[i-1][j];
                }
            }
        }
        return obstacleGrid[obstacleGrid.length-1][obstacleGrid[0].length-1];
    }
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值