一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1 和 0 来表示。
示例 1:
输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:
3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
- 向右 -> 向右 -> 向下 -> 向下
- 向下 -> 向下 -> 向右 -> 向右
示例 2:
输入:obstacleGrid = [[0,1],[0,0]]
输出:1
题意:
62的加强版,依旧是动态规划即可
代码:
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
//如果入口被堵住,则直接返回0即可
if(obstacleGrid[0][0]==1){
return 0;
}
//初始化边界条件
for (int i = 0; i < obstacleGrid.length; i++) {
if(obstacleGrid[i][0]==0){
obstacleGrid[i][0] = 1;
}else{
while (i<obstacleGrid.length){
obstacleGrid[i++][0] = 0;
}
}
}
//初始化边界条件
for (int i=1;i<obstacleGrid[0].length;i++){
if(obstacleGrid[0][i]==0){
obstacleGrid[0][i] = 1;
}else{
while (i<obstacleGrid[0].length){
obstacleGrid[0][i++] = 0;
}
}
}
//动态规划
for(int i=1;i<obstacleGrid.length;i++){
for (int j=1;j<obstacleGrid[0].length;j++){
if(obstacleGrid[i][j]==1){
obstacleGrid[i][j]=0;
}else{
obstacleGrid[i][j] = obstacleGrid[i][j-1]+obstacleGrid[i-1][j];
}
}
}
return obstacleGrid[obstacleGrid.length-1][obstacleGrid[0].length-1];
}
}