LeetCode刷题(python版)——Topic63. 不同路径 II

一、题设

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

输入:obstacleGrid = [[0,1],[0,0]]
输出:1

二、基本思路

        最base的想法就是在Topic62不同路径上做一点改进,即在有障碍的时候,该点的dp[i][j] = 0,因为有了障碍,那么到达该点的路径全部作废。那么状态转移方程如下:

        即在之前的代码上修改:

        1. 无障碍时执行状态转移方程:

 for i in range(1,m):
     for j in range(1,n):
         if obstacleGrid[i][j] == 0:
         # step2:确定状态转移方程
             dp[i][j] = dp[i-1][j] + dp[i][j-1]

         2.在初始化时在有障碍物的地方赋0:

          起初我是这样写的:

for i in range(m):
    if obstacleGrid[i][0] == 0:
        dp[i][0] = 1
for i in range(n):
    if obstacleGrid[0][i] == 0:
        dp[0][i] = 1  

        这样写的问题就是前后并没有影响,而是有障碍的时候为1,无障碍地时候为0,那么这样写的逻辑其实是错误的,其实当第一行或者第一列出现了一个障碍以后,那么之后的那一行或者那一列已经是走不通了,也应该是0.所以我们应该找到一个0,之后就是0了。如下:

# step3:初始化:遇到有障碍物的后面或下面都是0了
        i = 0  
        while i<m and obstacleGrid[i][0] == 0:
            dp[i][0] = 1
            i += 1
        i = 0
        while i<n and obstacleGrid[0][i] == 0:
            dp[0][i] = 1  
            i += 1

三、代码实现

 def uniquePathsWithObstacles(self, obstacleGrid):
        m,n = len(obstacleGrid),len(obstacleGrid[0])
        # step1:dp[i][j]表示到(i,j)坐标有多少种走法
        dp = [[0 for _ in range(n)]for _ in range(m)]
        # step3:初始化:遇到有障碍物的后面或下面都是0了
        i = 0  
        while i<m and obstacleGrid[i][0] == 0:
            dp[i][0] = 1
            i += 1
        i = 0
        while i<n and obstacleGrid[0][i] == 0:
            dp[0][i] = 1  
            i += 1
        #step4:确定遍历顺序
        for i in range(1,m):
            for j in range(1,n):
                if obstacleGrid[i][j] == 0:
                # step2:确定状态转移方程
                    dp[i][j] = dp[i-1][j] + dp[i][j-1]
        #step5:打印dp数组检查一下,略。
        return dp[-1][-1]

四、效率总结

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值